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Summary

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality 

rates of ~25%. The ability to rapidly predict SaB patient responses and guide personalized 

treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic 

biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of 

>10,000 features from >200 serum samples collected upon clinical presentation. We interrogated 

the complexity of serum using multiple computational strategies, which provided a comprehensive 

view of the early host response to infection. Our biomarkers exceed the predictive capabilities of 

those previously reported, particularly when used in combination. Lastly, we validated the 

biological contribution of mortality-associated pathways using a murine model of SaB. Our 

findings represent a starting point for the development of a prognostic test for identifying high-risk 

patients at a time early enough to trigger intensive monitoring and interventions.

Graphical Abstract

In Brief:

Multi-omics analysis of the serum of patients with Staphylococcus aureus bacteremia identified 

features with predicative value to determine disease mortality and guide treatment

Keywords
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Introduction

Overall mortality rates for Staphylococcus aureus bacteremia (SaB) range from 20 – 30% 

(Kern, 2010; van Hal et al., 2012; Wang et al., 2008) and underlying risk factors for serious 

S. aureus infections are expanding (Tong et al., 2015). SaB patients display a heterogeneous 

array of disease severity and patient outcomes (Holland et al., 2014; Rasmussen et al., 

2011); some patients clear the pathogen on first-line therapy, while others fail to resolve the 
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infection. Extended bacteremia leads to dysregulation of the host immune response, which is 

correlated with patient mortality (Minejima et al., 2016; Rose et al., 2012; Rose et al., 2017). 

This heterogeneity in SaB complicates the determination of optimal treatments. Current 

standard of care is to administer broad-spectrum antibiotics while awaiting pathogen 

susceptibilities to guide treatment decisions. However, blood cultures are not always 

attainable, and it may take several days to deduce antibiotic susceptibilities. Any delay in 

intervention exacerbates patient mortality, especially in sepsis (Dellinger et al., 2013; Ferrer 

et al., 2014). In the case of vancomycin, while resistance is rare, clinical failure is common, 

revealing shortcomings in predictive power of standard antimicrobial susceptibility testing 

(Ersoy et al., 2017). Herein, we explore if host responses measured within hours of clinical 

presentation can accurately predict mortality risk, which could ultimately inform appropriate 

and personalized therapy.

We previously identified immunological biomarkers for SaB mortality (Rose et al., 2012; 

Rose et al., 2017) and prolonged bacteremia (Rose et al., 2017), which were subsequently 

corroborated in independent studies (Guimaraes et al., 2019; Minejima et al., 2016). While 

these findings represent starting points for ‘precision medicine’ in SaB, the host response to 

infection is highly complex and extends beyond immunological parameters. For example, 

lactic acidosis and acute kidney injury are associated with SaB mortality, and are potential 

markers of mitochondrial dysfunction, reflecting effects on host metabolism (Mikkelsen et 

al., 2009; Ralto and Parikh, 2016; Singer, 2014). Thus, a comprehensive, unbiased 

assessment of host factors altered during SaB may elucidate additional features that can 

predict patient outcomes and guide therapeutic development.

Here, we construct a molecular snapshot of SaB patient serum collected upon clinical 

presentation, providing the earliest view possible of the in vivo human response to infection. 

Using metabolomics and multiplexed quantitative proteomics, we analyzed samples from 

two cohorts (>200 individuals), including uninfected controls. Through multiple rounds of 

biomarker analyses, we defined features with strong individual predictive value, which 

increases when used in combination. The depth of analysis was enhanced through 

computational methods, which identified prevalent post-translational modifications (PTMs) 

and inferred underlying cytokine signaling networks. These techniques revealed 

glycopeptides as more precise biomarkers and uncovered carbamylation on serum proteins 

in patients who succumbed to infection. Ultimately, we provide a starting point for a rapid 

clinical test that identifies patients with high mortality risk. Further refinement of SaB 

biomarkers will enable clinicians to identify patients who need intensified monitoring and 

therapy, rather than responding post-hoc to failures in standard of care.

Results

Overview of Multi-omic SaB Patient Serum Analysis

We employed a multi-omic approach to gain a comprehensive view of the SaB host-

pathogen interaction (Figure 1A). First, a discovery cohort was analyzed by standard 

multiplexed proteomics to assess the ability of serum proteins to predict SaB patient 

phenotypes. This initial analysis identified 1,405 proteins with a false discovery rate (FDR) 

<1%, and yielded biomarker candidates associated with various disease features including 
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mortality (Table S1). Based on this analysis, a power calculation was performed and, 

together with reported recommendations (Frantzi et al., 2014), we designed a validation 

cohort of 200 samples (25 control, 99 SaB survival, 76 SaB mortality). To deepen our 

comprehension of the molecular features related to SaB, the expanded cohort was analyzed 

through standard proteomic workflows as well as PTM-tolerant and metabolomic 

approaches (Fig 1A). Overall, 1,088 proteins (294 across all samples - Table S2), 5,280 

metabolomic features (720 across all samples - Table S3) and 6,700 modified peptides (332 

across all samples - Table S4) were quantified in this experiment. The resultant >10,000 

features were analyzed with binary comparisons to identify biomarkers, and through 

clustering and network based approaches to define disease associations within our primary 

sample groups (Control groups: NN – Non-hospital, Non-infected; HN – Hospital, Non-

infected; Infection groups: HS – Hospital, Survival; HM – Hospital, Mortality).

Hierarchical clustering of the proteomics data showed clear segregation of the control and 

infected samples (Fig 1B). In contrast, SaB survival and mortality groups were intermixed, 

indicating that the differences between SaB mortality and survival is subtle. Nevertheless, 

stratification of mortality and survival groups was observed in the clustered dendrogram, 

indicating the potential to define mortality biomarkers. As a proof-of-principle for 

distinguishing disease states, we first selected a highly discriminating protein for predicting 

infection, rather than mortality. SERPINA5 emerged as a top hit (Fig 1C), with a receiver 

operator characteristic (ROC) area under the curve (AUC) of 0.9891 (Fig 1D). This protein 

had a higher AUC than the standard infection marker, C-reactive protein (CRP) (WHO, 

2014), in the current dataset (AUC = 0.9691) as well as reported values (maximum AUC = 

0.92) (Liu et al., 2010; Park et al., 2014; Povoa et al., 2005). This example demonstrates the 

power of unbiased proteomics for biomarker discovery.

Definition of High-confidence Biomarkers to Predict SaB Patient Mortality

Our first goal was to define high-confidence biomarkers to predict SaB patient mortality. To 

rank biomarkers, we took an ensemble feature selection (EFS) approach (Neumann et al., 

2017), which applied multiple feature selection algorithms, then aggregated and ranked the 

results. This method can avoid biases associated with individual feature selection algorithms 

(He and Yu, 2010) and was applied to the two primary datasets to rank top biomarkers 

(Proteomics Fig 2A; Metabolomics Fig2D). Due to the incompatibility of EFS with missing 

values, features with missing values were ranked using Mann-Whitney U (MWU) tests and 

the average from both strategies was taken for final biomarker rankings (Table S2–3). 

Importantly, biomarker ranks by EFS and MWU tests were concordant (Fig S1A–B). The 

highest ranked protein biomarkers were fetuin B (Fig 2B), heparin cofactor II (SERPIND1, 

Fig S1C), and carnosine dipeptidase 1 (CNDP1, Fig S1D), all with decreased serum levels. 

The decrease in serum fetuin B was also captured in the initial cohort, despite a low number 

of mortality samples analyzed (Fig S1E). Our top biomarkers with increased serum levels 

were SVEP1 (Fig 2C), cystatin B (CSTB, Fig S1F) and pulmonary surfactant-associated 

protein B (SFTPB, Fig S1G). Applying a similar approach to the metabolomics data, we 

found that the highest ranked biomarkers were unidentified MS features (Fig 2D). However, 

these molecules showed considerable predictive utility (Fig 2E and F), similar to our top-

ranked protein biomarkers (ROC AUC=~0.75; p-value<0.0001). The top ranked, identified 
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metabolites include 2-Hexadecanoylthio-1-Ethylphosphorylcholine (HEPC, Fig S1H) and 

sphingosine-1-phosphate (S1P, Fig S1I) by EFS and thyroxine (T4, Fig S1J) and decanoyl-

carnitine (Fig S1K) by MWU test.

The EFS approach ensures that the top-ranked biomarkers are not correlated to one another 

and therefore could be used in combination for the enhanced prediction of SaB patient 

mortality (Williams, 2009). Using the top two markers from both workflows enhanced 

predictive power relative to the individual markers alone (Fig 2G). To support the 

proteomics workflow, we validated fetuin B (Fig 2H) and other top biomarkers (Fig S1L–M) 

in a subset of samples using enzyme-linked immunosorbent assays (ELISAs) (Fetuin B 

AUC=0.8945). Our results indicate that patients with low fetuin B (<2.2 μg/ml) had 

significantly reduced survival compared to patients with high fetuin B (Fig 2I).

An important factor to consider when performing biomarker analyses is the influence of 

confounding factors (Ensor, 2014). To investigate this matter, we performed a metadata-wide 

assessment for every multi-omic feature detected (Proteomics Table S5; Metabolomics Table 

S6). We found that all top biomarkers (up and downregulated) are predominantly associated 

with infection and mortality, with minimal associations to other clinical metadata 

(Proteomics Fig 2J, S2A–G; Metabolomics Fig S2H–M). The next most common metadata 

associated with the top biomarkers are dialysis and serum creatinine levels, both related to 

kidney function (Levey et al., 1988) and mortality in bacteremia (Nielsen et al., 2015; 

Vandecasteele et al., 2009). Indeed, there was negligible influence of typical confounding 

variables (e.g. age, gender) on the top SaB mortality biomarkers. Overall, these results 

provide an extensive list of biomarkers associated with SaB mortality.

PTM-tolerant Analysis of Serum Samples Enables the Identification of Disease-associated 
PTMs

Serum is a notoriously difficult sample to analyze via proteomics (Chandramouli and Qian, 

2009; Geyer et al., 2017), attributed to the large dynamic range of proteins and high numbers 

of PTMs. Thus, standard serum proteomic searches fail to identify greater than 90% of the 

spectra acquired from mass spectrometry (MS)-based proteomics (Dey et al., 2019). We 

hypothesized that predicating abundant PTMs could facilitate a PTM-inclusive analysis and 

identify more spectra. PTM identification and localization is optimally derived from high-

resolution mass spectra (Chick et al., 2015; Devabhaktuni et al., 2019). Thus, all subsequent 

PTM analyses was performed on high-resolution MS2 data acquired in the Orbitrap mass 

analyzer. The high-resolution data displayed similar results to low-resolution data when 

matching unmodified peptides in terms of peptide spectrum matches (PSMs) (Fig S3A), 

identification of peptides (Fig S3B) and proteins (Fig S3C), and quantification by both 

spectral counting (Fig S3D) and TMT-based quantification (Fig S3E). To identify global 

modifications in the serum proteome, we used molecular networking to group similar 

spectra that differ by regular mass shifts (Wang et al., 2016). Overall, we networked >80% 

of the MS2 spectra (Fig 3A), suggesting that many of the peptides identified in the standard 

database search have variant forms. We observed highly abundant PTMs present in our data 

(Fig 3B), including expected artifacts such as oxidation of methionine (+15.99), alkylation 

of cysteine (+57.02) as well as unanticipated modifications such as carbamylation (+43.005), 
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dioxidation (+31.99), and formylation (+27.99). Notably, the glycan moieties fucose 

(+146.06), hexose (+162.05), and sialic acid (+291.1) were also highly abundant. This 

suggests that the peptides captured in our MS analysis are rich in PTMs, complicating 

identification through traditional strategies.

To capitalize on these discovered modifications, we employed a PTM-tolerant search 

strategy, which achieved a doubling of the serum PSM rate (Fig 3C). Non-glycan 

modifications called in the PTM-tolerant search were correlated with the number of edges 

from the GNPS analysis (Fig 3D). Further, >85% of glycosylation sites detected have been 

previously reported in Uniprot (Fig S4A), supporting their identification as true 

glycopeptides. The distribution of mass errors from the modified peptides was nearly 

identical to the standard search (Fig S4B), indicating spectral identification quality is 

maintained. We also found that the total PSMs and unique peptides per protein were highly 

correlated between the standard and the PTM-tolerant search (Fig S4C–D). We noted that 

the PTM-tolerant search increased the number of unique peptides detected for low-abundant 

proteins; proteins with the fewest unique peptides in the standard search gained more unique 

peptides in the PTM-tolerant search than proteins that had many unique peptides originally 

detected (Fig S4E). Gene ontology (GO) analysis (Huang et al., 2007) revealed that the 

majority of proteins with boosted unique peptides were immunoglobulins (Fig S4F), but a 

number of intracellular proteins showed similar gains (Fig S4G) and had PTMs that 

demonstrated significant associations to hospitalization (Fig S4H) and infection (Fig S4I). 

Our results demonstrate that predicting abundant modifications can inform search strategies, 

yielding higher PSM rates and increased confidence in low-abundant proteins while also 

identifying disease-associated PTMs.

We reasoned that modified peptides might act as biomarkers for predicting infection or SaB 

mortality. Again, due to the incompatibility of EFS with sparse data, we ranked PTM 

biomarkers solely on MWU test p-values. Intriguingly, the top biomarkers for infection and 

mortality were both glycans on alpha-2-HS-glycoprotein (AHSG), also known as fetuin A 

(Fig 3E–F). The support for these two glycans is strong as evidenced by >50 unique PSMs 

detected for each peptide, some of which have Byonic scores >400 (corresponding to an 

FDR <0.1%) (Bern et al., 2012). Individually, these biomarkers demonstrated higher ROC 

AUC values than our top unmodified protein biomarkers (0.9981 vs. 0.9891 for infection 

and 0.8066 vs. 0.7548 for mortality, Fig 3E–F). Unmodified fetuin A was also a top 

biomarker for both infection and mortality (Fig 2A), although the observed fold-change was 

higher for the glycans than the total protein (Fig 3G). The metadata confirmed these 

biomarkers are primarily associated with infection and mortality (Fig S4J; Table S7). This 

suggests that these glycans may yield better predictive value than the unmodified protein 

alone. When used in concert with our top protein and metabolite biomarkers (nine total 

molecular features), these glycans enhanced predictive power (AUC=0.92, Fig 3H). To our 

knowledge, this approach generated the top model, based on AUC and n, for predicting 

mortality from any infection using patient-derived biomarkers.

The PTM analysis above was performed on the normalized raw abundances for each 

modified peptide without consideration for protein level changes. However, the modified 

peptide abundances can also be normalized to the protein level to investigate divergent 
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regulation of the protein and associated PTMs. Overall, the modified peptides had a positive 

correlation to their respective protein levels (Fig S4K). Similarly, when we compare the 

fold-changes of the modified peptide abundance to the protein normalized values for 

infection and mortality changes, we observe correponding results (Fig S4L–M) with some 

exceptions. To better understand which modifications deviated from their protein level, we 

first filtered the protein-normalized PTMs with significant alterations in any of the primary 

sample groupings (i.e. NN, HN, HS, HM) using ANOVA (p<0.05), then clustered these 

features based on expression, which revealed interesting trends in modified peptides (Fig 

S4N). Most striking was a cluster of modifications (Cluster 2) that showed a stark increase 

in abundance specific to the mortality samples (Fig 3I). Nearly half (46%) of the modified 

peptides in this cluster were assigned to only two proteins: albumin and serotransferrin (Fig 

3J) with the modifications being primarily carbamylation and formylation (Fig 3J). 

Comparing the relative changes in the modified peptide to the total protein abundance for 

albumin (Fig 3K), we noted that, while total albumin levels dropped upon infection and were 

reduced further in mortality, albumin was modified at a higher level in the mortality group 

(Fig 3K). Modifications on serotransferrin demonstrated a similar trend (Fig S4O). Together, 

this analysis enabled a deeper interrogation of serum-derived proteomics data and linked 

multiple, distinct PTMs to increased SaB mortality.

Unbiased Clustering of SaB Disease Modules

Beyond defining biomarkers to predict SaB mortality, we sought to further understand the 

effects of S. aureus on the human serum landscape using our multi-omic dataset. Performing 

a similar clustering approach used for the PTM analysis, the proteomics data was grouped 

into 6 clusters (Fig 4A) and the metabolomics data into 7 clusters (Fig 4D), revealing 

expression profiles of interest. Proteomics cluster 2 (C2) captured the host response to 

infection regardless of mortality status, including CRP, serum-amyloid proteins 1 and 2, and 

other acute-phase components (Fig S5A–E). Clusters 4, 5 and 6 showed increases (C5) and 

decreases (C4 and C6) in the mortality group making them prime clusters for investigation. 

For clarity, the mortality-associated proteomics clusters were renamed according to their 

expression direction and magnitude compared to control samples (C4: pMortality−, C5: 

pMortality+, C6: pMortality−− “p” = “proteomics”). Similarly, we renamed the most 

interesting metabolomics clusters according to their mortality expression directions and 

magnitude (C1: mMortality++, C3: mMortality+, C4: mMortality−; “m” = “metabolomics”).

To examine the crosstalk of proteins between clusters, we performed a functional association 

analysis on the clustered proteins (Szklarczyk et al., 2019) (Fig 4B). Interestingly, we found 

the largest number of connections between proteins within the pMortality+ and pMortali−− 

clusters (Fig 4C), even though they change in opposite directions relative to the control 

patients. This suggests that proteins that increase in expression may impact the decrease in 

expression of another protein, and vice-versa.

Due to their association with SaB mortality, we used GO analysis on mortality associated 

protein clusters to define their functional roles (Fig S4F–H). While the pMortality− cluster 

had few, low-significant enrichments (Fig S5F), the pMortality+ and pMortality−− clusters 

had multiple, highly significant functional groups enriched. Cluster pMortality+ is 
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dominated by extracellular matrix (ECM) and insulin-like growth factor binding proteins 

(IGFBPs) and has a moderate enrichment for tumor necrosis factor (TNF)/ interleukin-1 

(IL1) response (Fig S5G). The ECM adhesion proteins ICAM1 and VCAM1 have 

previously been shown to be elevated in SaB patients (Soderquist et al., 1999), and TNF can 

be used as mortality biomarkers in humans (Rose et al., 2012). However, the enrichment for 

IGFBPs in this cluster represents an unexpected finding. In contrast, pMortality−− was 

enriched for protease inhibitors, complement/coagulation cascade members and lipoproteins 

(Fig S5H). A decrease of lipoproteins is well described in sepsis (van Leeuwen et al., 2003) 

and the reduction in complement/coagulation is consistent with the proteolytic activation of 

these proteins. We also noted that a subset of IGFBPs were present in this cluster and 

possessed some of the most significant p-values, which is particularly interesting given the 

presence of other family members in pMortality+ (discussed further below).

While functional association tools are absent for metabolic data interpretation, metabolites 

can be grouped based on MS2 spectra using molecular networking (Wang et al., 2016). This 

analysis results in the formation of metabolite networks with structural similarity. For data 

visualization, we overlaid the K-means cluster color onto the individual metabolites in these 

networks (Fig 4E). A bird’s eye view of the data revealed that nodes within a specific 

network were commonly assigned to the same expression cluster. In fact, >95% of molecular 

networks had at least half of their nodes co-regulated (Fig 4F). In addition, some clusters of 

similar expression profiles were often contained within the same networks, such as 

mMortality+ and mMortality++ (increased in infection/mortality) and clusters 6 and 7 

(increased in hospitalization) (Fig 4G). Together these findings suggest that structurally 

related metabolites are often co-regulated, offering more support for their importance in the 

host response to infection.

Using a combination of molecular networking, spectral library matching and ClassyFire, we 

were able to provide identity information for nearly half (2412/5280; 46%) of the observed 

metabolomic features (Fig S5I). Spectral library matches were generally assigned the proper 

class of molecule by ClassyFire (83/86 – 97%), indicating good agreement between the two 

tools. Additionally, the ontology provided by ClassyFire provided further coverage of 

networked metabolites [e.g. Subnetwork 13: acyl-carnitines (Fig S5K); Subnetwork 15: bile 

acids and fatty acyls; Subnetwork 45: glycerophosphocholines (Table S3)] supporting their 

similarities. While only 20% (481/2412) of features with molecular information were 

identified using spectral libraries or ClassyFire, a much larger number of features are 

interpretable using molecular networks (Fig S5I).

To identify metabolites related to SaB, we first looked for compound classes that were 

enriched in mMortality clusters. It was found that all the significantly altered acyl-carnitines 

(ACs - 7/7 features) and steroid/steroid derivatives (6/6 features) were assigned to 

mMortality+ or mMortality++. In contrast, significantly altered indoles were almost 

exclusively assigned to the mMortality− cluster (4/5 features). Previous literature supports 

increased ACs (Puskarich et al., 2018), linked to liver dysfunction, and decreased indoles 

(Zeden et al., 2010) (e.g. tryptophan) in sepsis. The increased levels of steroids, including 

hydrocortisone, could be related to the inability of the patients to metabolize these 

treatments due to liver dysfunction (Schiffer et al., 2019).
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Next, we screened for networks that contain multiple nodes from mMortality clusters. These 

include, among others, the AC network (Fig S5K), and networks containing bilirubin (Fig 

S5L) and biliverdin (Fig S5M). Bilirubin and biliverdin themselves were not associated with 

mortality; however, there were related molecules in these networks that went unidentified 

but had associations with mortality. Interestingly, there were many 14 Da edges in these 

networks, indicating methylation. Bilirubin/verdin both possess carboxylic acid functional 

groups, which are amenable to Fischer esterification in the presence of an alcohol. While 

these analogs may be the result of methanol extraction during sample preparation, their 

associations with mortality make them candidates for further study. We also discovered 

networks of co-regulated, unidentified metabolites that were associated with mortality and 

infection (Fig S5N). This unknown molecular network has a number of high molecular 

weight mass shifts, which may assist in determining the identity of these features. One of the 

benefits of using GNPS is the “living data” concept wherein the data is continuously 

reanalyzed (Wang et al., 2020). As GNPS matures, these molecules may be identified, which 

would allow for investigation into their relation to SaB.

Data Integration and Multi-group Classification

We reasoned that integration of the clustered data could be used to identify relationships 

between proteins and metabolites. Further, an integrated dataset could be used to support our 

binary biomarker analysis by determining the smallest number of features needed to classify 

the samples into our four primary groupings. Therefore, we took the most confidently 

identified features (i.e. identified in at least 50% of samples - 3500 features), imputed 

missing values, then scaled the datasets before merging them. A least absolute shrinkage and 

selection operator (LASSO) logistic classification algorithm (Friedman et al., 2010), which 

penalizes large models, was employed to identify the minimum features needed to 

accurately classify the sample groups. A panel of 98 features was ultimately selected, which 

demonstrated stratification of the samples (Fig S6A) with a mean one-vs-all ROC AUC of 

0.9014 for all pairwise comparisons. As expected, features important for predicting each 

group were primarily derived from their respective group-associated clusters in Fig 4 

(proteomics Fig S6B; metabolomics Fig S6C). We noted that some of the mortality-related 

features were highly ranked in both the initial binary comparisons and the multi-class 

regression analysis including: SERPIND1 and albumin from the proteomics data and T4 and 

hydrocortisone from the metabolomics data. This multi-omic panel reinforces the binary 

comparison analysis while highlighting the minimal features needed to classify all sample 

groups.

Next, we examined the integrated dataset for protein-metabolite relationships using the 

mixOmics R package (Rohart et al., 2017). Many correlations between proteins and 

metabolites were found (Fig S6D), which can be displayed as a network overlaid with K-

means cluster values (Fig S6E). From this analysis we identified clusters of co-regulated 

features associated with mortality (Fig S6E - #1) or hospitalization (Fig S6E - #2). The 

mortality-related features were primarily derived from pMortality−− and the mMortality− 

clusters and contained many of our top biomarkers (e.g. fetuin A/B, albumin, SERPIND1 

and the IGF system) as well as many nodes from the unknown molecular network in Fig 

S5G. Most of these proteins are involved in lipid transport or hemostasis (Fig S6E). The co-
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regulation observed between these proteins and metabolites suggests that the unknown 

metabolites function in a similar pathway and highlights potential crosstalk between the 

multi-omic data.

Global Characterization of Metabolic Dysfunction in SaB Mortality Patients

Many of our findings indicate that the most predictive signature for SaB mortality centers on 

a broad reprogramming of host metabolism. Our systems level analysis enables a 

comprehensive assessment of major host metabolic pathways. For example, we quantified 

every member of the IGF signaling pathway, which demonstrated divergent regulation in our 

mortality-associated protein modules. Specifically, IGFBP1, 2, 4 and 7 were assigned to 

pMortality+ (Fig 5A), while IGFBP3, 5 and IGFALS were in pMortality−− (Fig 5B). 

IGFBPs function by binding to and stabilizing IGF-I and II in serum (Baxter, 2014). The 

binding of IGFs to IGFBP1, 2, 4 or 7 results in the formation of binary complexes that 

extend the half-life of IGFs from 2 to 30 minutes. However, if both IGFBP3 (or 5) and 

IGFALS bind IGFs, forming a ternary complex, this stabilization is increased up to 24 hours 

(hrs). Given the expression patterns, we expect the amount of IGFs to decrease as the 

constituents of the ternary complex decrease. Indeed, we noted a significant decrease in 

IGF-II with increasing disease severity and a similar trend with IGF-I, although the latter 

results did not attain statistical significance (Fig 5C). Further, a comparison of the 

correlations between IGFI and II with all the IGFBPs detected in our dataset revealed 

positive correlations of IGFs with IGFBP3, 5 and ALS, but negative correlations with the 

rest of the IGFBPs (Fig 5D). Together, these data suggest that SaB mortality is associated 

with a decrease in the IGFBP ternary complex and an increase in binary complexes, 

resulting in lower levels of circulating IGFs.

Given the striking association of the IGF system with SaB mortality and the role of IGFs in 

metabolism, we sought to further understand this metabolic dysfunction. Thus, we mined the 

data for other features related to general host metabolism. A signature derived from the GO 

analysis of our pMortality clusters, is the general decrease in apolipoproteins upon infection, 

which further decreases in SaB mortality patients (Fig 5E). A depletion of lipoproteins in 

response to infection is known and proposed to be a prognostic marker for severe sepsis 

(Christoffersen and Nielsen, 2012; Sharma et al., 2019). Our results support these findings 

and establish a link between this phenomenon and SaB in addition to non-specific sepsis.

We also uncovered evidence for metabolic dysfunction within our metabolomics dataset. 

The most prominent single feature was thyroxine (T4), a master regulator of host 

metabolism. T4 was a top ranked biomarker from the binary comparison analysis and also 

selected for inclusion in the integrated multi-class regression model. We noted a similar 

trends in thyroxine-binding globulin (SERPINA7; Fig 5F) and transthyretin (TTR; Fig 5F) 

both of which bind to and stabilize T4 in circulation (Schussler, 2000), further supporting 

the reduction in T4 levels. Thyroid dysfunction during non-specific sepsis is well 

characterized (Bello et al., 2009; Plikat et al., 2007); however, it has not been previously 

associated with SaB infections or mortality.

Another connection of metabolism with SaB mortality is the increase in AC abundance in 

mortality patients. ACs are involved in fatty acid metabolism (McCoin et al., 2015) and the 
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increased serum levels here is likely a signature of beta-oxidation dysfunction in the liver. 

Unlike T4, which was not within a molecular network, the ACs were found to be part of 

larger network of metabolites (Fig 5G, S5K), which was predominantly assigned to 

mMortality+ (yellow) and mMortality++ (red) (Fig 5G–H). Most of these nodes were not 

identified by spectral library matches; however, we noted many mass shifts of 28 Da, 

corresponding to two links in a fatty acid chain (i.e. CH2-CH2). By following the mass 

shifts through the molecular network, we can assign identities to additional nodes such as 

hexanoyl/octanoyl-carnitine, which have stronger associations to mortality than the initially 

identified decanoyl-carnitine. Many of these nodes were also assigned as ACs by ClassyFire. 

Interestingly, there is a subset of this network that is moderately related to ACs, which is 

also associated with mortality and possesses 28 Da mass shifts suggestive of a fatty acid 

chain (Fig 5G circle). Determining the molecular structures of these compounds and how 

they impact fatty acid metabolism would give us a deeper understanding of metabolic 

dysfunction associated with SaB patient outcomes.

Knowledge-based Analysis of Proteome Alterations Captures Underlying Cytokine 
Mortality Signatures

The above results describe a comprehensive assessment of the molecular features associated 

with SaB mortality that are amenable to MS-based analyses. However, major cytokine 

families, the focus of most infectious disease biomarker studies, were underrepresented in 

our dataset. These signaling molecules fall below the standard limit of detection in typical 

serum proteomic experiments (Geyer et al., 2017), even in recent attempts at ultra-deep 

serum proteome coverage (Dey et al., 2019; Keshishian et al., 2015), but have been shown to 

play major roles in disease. Therefore, we designed a computational approach to infer the 

relative importance of major cytokine families from our proteomics data using functional 

protein association networks (Fig 6A workflow description in Methods). To benchmark our 

approach, we compared the results to ingenuity pathway analysis (IPA) applied to the same 

clusters. We found that the cytokine prediction scores were highly correlated between both 

strategies, particularly for IL6, TGFβ1, TNF, IL1β and IL10 (Core-5 cytokines, Fig 6B). 

Notably, four of these Core-5 cytokines have demonstrated associations with SaB mortality 

and/or duration in previous studies (TNF, IL10, and IL1b (Rose et al., 2012; Rose et al., 

2017); IL6 (Guimaraes et al., 2019)), providing validation for this approach.

In addition to cytokines, IPA reports enrichments for a variety of categories, such as 

endogenous molecules, drugs and enzymes. We found that these extended IPA analyses 

validated results observed in the MS data such as thyroid hormone (T3), IGF system (IGFI 

and II), lipid metabolism (LPL, CETP, LIPC) and infection/inflammatory responses (H2O2, 

MAPK and MAPKK inhibitors) (Fig S7A). Although the IPA analysis largely agreed with 

our approach, there were differences (IPA: IL17, IL1α and IL11; cytokine-inference: CCL2, 

CXCL8 and IL18 (Fig S7B)). These differences can be explained by annotation biases of 

each tool as even the co-predicted cytokines have marginal overlap of target proteins (~33%; 

Fig S7C–D). Nevertheless, cytokines uniquely predicted from each tool have also been 

linked to SaB mortality or duration by previous studies (IL17, CCL2, CXCL8 and IL18 

(Guimaraes et al., 2019)). Thus, while the Core-5 cytokines captured the most probable 
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contributors, a combination of both strategies provides a more complete view of the 

underlying cytokine signature and downstream effectors.

Focusing in on the Core-5 cytokines, we found that most of the connections were to proteins 

in pMortality+ (Fig 6C). Regenerating a protein association network using only proteins 

from pMortality+ that are directly linked to a Core-5 cytokine yielded a refined network (Fig 

6D) that is easier to interpret than the networks initially generated (Fig S7E). Similar 

networks can be made with the proteins from pMortality−/−− (Fig S7F–G). Delving into the 

pMortality+ network, we found a subset of proteins were connected to both pro and anti-

inflammatory cytokines (Fig 6D purple circles). Due to the known imbalance of pro- and 

anti-inflammatory cytokines in SaB, these proteins may be the most interesting for further 

study. This includes several proteins that contribute to inflammation resolution (e.g. 

ADIPOQ, MRC1, CD163) and may represent actionable targets for new therapeutic 

interventions. Together, this analysis predicted the top cytokines that influence the observed 

proteome landscape and enables researchers to define disease-associated pathways to test in 

functional studies.

T4 and Adiponectin Signaling Influence SaB Outcomes in vivo

While the analyses above detail the biomarkers and pathways altered during SaB, it is 

unclear whether they are simply bystanders or functionally contribute to disease outcomes. 

To address this gap, we utilized a mouse model of SaB to assess the influence thyroid 

hormones and adiponectin signaling on bacterial burden and overall survival.

Our multi-omic analysis captured a dysregulation of host metabolism (Fig 5), including 

reduced levels of T4 in mortality patients. Exogenous T4 has been previously shown to be 

protective in mouse and rat models of polymicrobial sepsis (Al-Abed et al., 2011); however, 

its contributions to SaB remain unclear. Further, the impact of a hypothyroid state on SaB 

has not been tested. To address these questions, we designed an animal experiment to test 

whether altering T4 levels could affect survival in a mouse SaB model (Fig 7A). We treated 

mice with either a hypo- or hyperthyroid treatment (Al-Abed et al., 2011; Tsourdi et al., 

2015), then intravenously infected the mice and assessed survival. We found that 

hypothyroid mice had higher mortality rate than control mice while the hyperthyroid group 

had a four-times greater survival at 48 hrs post-infection (p.i.) (Fig 7B). While the 

hypothyroid mice died more rapidly, control animals also succumbed to infection, leaving a 

small window to observe differences between the groups. To clarify these results, we 

repeated the hypothyroid infection with a lower dose of S. aureus (50% original inoculum) 

and harvested organs for bacterial enumeration. Again, the hypothyroid mice had increased 

mortality than the control group (Fig 7C), and, consistently, the mice surviving at 48 hrs p.i. 

had increased bacterial load in their hearts (Fig 7D) and kidneys (Fig 7E), indicating a defect 

in bacterial clearance.

While the association of T4 with SaB has not been previously described, dysregulated 

cytokine production has been previously associated with SaB mortality and is supported by 

the cytokine-inference approach described above (Fig 6). Anti-inflammatory proteins 

associated with prominent cytokine signatures may play a role in suppressing the 

overwhelming immune response observed in bacteremia patients. One of these anti-
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inflammatory proteins, ADIPOQ (adiponectin), had not been linked to SaB, but it is known 

to induce IL10 in leukocytes (Wolf et al., 2004). Given that IL10 is protective in a mouse 

SaB model (Leech et al., 2017), we hypothesized that targeting adiponectin could also 

improve survival outcomes. To test this hypothesis, we treated mice with a small-molecule 

activator of the adiponectin receptor, AdipoRon, or vehicle control (Fig 7A), and utilized the 

same experimental scheme described above. Treatment with AdipoRon markedly enhanced 

mouse survival (Fig 7F) and significantly reduced organ CFUs (Fig 7G–H). Altogether, 

these in vivo studies demonstrate that stimulation of both the thyroid hormone system and 

adiponectin receptor are protective in a mouse SaB model.

Discussion

The traditional strategy for defining biomarkers for infectious diseases has been based on a 

subset of immunological parameters. Here, we establish a new standard of infection-related 

biomarker assessment by examining a much broader host response profile, eliminating the 

assumption that all clinically relevant details are immunological. Through a multi-omic 

approach, we define numerous features and multi-variate models that can accurately predict 

SaB patient mortality. These features can be paired with previously described cytokine 

markers, quantified with more sensitive immunoassays, to enhance prognostic value. Further 

investigation is needed to determine if these markers are specific to SaB or conserved in 

response to other infections. To better understand the biology underlying SaB mortality, we 

expanded this study through the application of additional computational analyses, an in-

depth interrogation of mortality-relevant alterations, and in vivo validation of therapeutic 

relevance.

Crude predictors of SaB mortality can be based upon clinical assessments of the patient 

(Hawkins et al., 2007; Pastagia et al., 2012); however, they lack the sensitivity and 

specificity required to serve as reliable stratification methods upon which to individualize or 

de-escalate therapy. Due to this ambiguity, treatment decisions in SaB are based upon ‘one 

size fits all’ protocols that originate from empirical clinical experience developed throughout 

the antibiotic era (Liu et al., 2011). As a result, improvements in mortality in MRSA 

bacteremia have not kept pace with other fields of medicine over the past three decades, 

despite better drugs and faster diagnostics (Fowler et al., 2006; Rehm et al., 2008). While 

combination therapies (e.g. daptomycin plus ceftaroline) offer an appealing approach to 

improve survival in SaB, these drugs cost >50X more than vancomycin, posing considerable 

economic constraints. Attempts at developing cheaper combinations have been wrought with 

toxicity (Burgess and Drew, 2014; Gomes et al., 2014; Tong et al., 2020). Utilizing the 

biomarkers uncovered herein to identify the 20 – 30% of patients with high mortality risk on 

standard therapy would provide a compelling advance in the management of SaB.

In addition to defining standard protein and metabolite biomarkers for SaB mortality, we 

utilized two computational strategies for a deeper analysis. First, using a workflow for the 

prediction and identification of PTMs, we revealed that the paucity of identifications in the 

serum proteome likely derives from modified peptides, including both serum glycoproteins 

and small PTMs. Using refined database searching techniques resulted in the identification 

of our top predictive biomarkers, glycosylated peptides derived from fetuin A. Glycosylation 
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has been used as biomarkers for various diseases, including cancer (Silsirivanit, 2019), 

Alzheimer’s (Regan et al., 2019) and inflammatory conditions (Gornik and Lauc, 2008). 

However, this is the first time that host glycosylation patterns have been linked to human 

SaB mortality, which could provide a useful clinical tool in the future.

Intriguingly, our top unmodified biomarker was fetuin B and our top modified biomarker 

was glycosylation of fetuin A. Fetuins belong to the cystatin superfamily of proteins 

(Dabrowska et al., 2015; Olivier et al., 2000) and can transport fatty acids in the bloodstream 

(Cayatte et al., 1990). Both fetuin A and B are studied in metabolic disorders such as obesity 

and diabetes; however, their expression is increased in these diseases rather than decreased 

as observed in SaB. Notably, fetuin A has also been shown to exert anti-inflammatory effects 

and supplementation is protective in mouse models of systemic inflammation (Cayatte et al., 

1990). One proposed mechanism of the protective effects of fetuin A appears to be through 

enhancement of spermine-mediate macrophage deactivation, potentially limiting immuno-

pathology. Future studies are needed to determine if similar mechanisms are at play in SaB 

as well as what role fetuin B plays in this process. Regardless, both proteins present an 

intriguing link between metabolism and bacteremia and can now be classified as biomarkers 

of SaB mortality.

Another PTM finding was an increase in carbamylation of albumin and serum transferrin in 

mortality patients. Protein carbamylation is a non-enzymatic PTM (Jaisson et al., 2018) that 

is related to a number of pathologies, including chronic kidney disease (Berg et al., 2013) 

and rheumatoid arthritis (Pruijn, 2015). In fact, multiple studies have proposed 

carbamylation of albumin as a prognostic factor for mortality in patients with kidney failure 

(Berg et al., 2013; Kalim et al., 2013). Kidney disease and SaB are intimately related 

(Alobaidi et al., 2015; Nielsen et al., 2015), and the common signature of carbamylation 

suggests an underlying pathological process. Further, patients with rheumatoid arthritis, 

which can also be linked to S. aureus infections (Joost et al., 2017) and colonization 

(Goodman et al., 2019), are reported to have more anti-carbamyl antibodies (Shi et al., 

2014). Whether this modification is pathological or simply a marker of disease severity 

requires additional experiments; nevertheless, it appears linked with a variety of disease 

states.

The second computational advancement in serum bioanalytics utilized in this study is the 

inferring of cytokine signatures from serum proteomics data. This analysis predicted major 

alterations in IL6, TGFβ1, TNF, IL1β, and IL10 in mortality samples, all of which were 

validated by an orthogonal approach (ie. IPA) and have exhibited associations to SaB human 

mortality in previous studies (Guimaraes et al., 2019; Minejima et al., 2016; Rose et al., 

2012; Rose et al., 2017). This approach also enables researchers to link these major cytokine 

players to the observed proteomic data, facilitating the construction of testable hypotheses 

(such as the impact of adiponectin signaling in SaB). Together, this method refined host 

response pathway analysis and identified unreported potential players in SaB.

In addition to defining SaB mortality biomarkers, we sought to gain a deeper understanding 

of the host response to SaB through clustering and network-based analyses. Unexpectedly, 

the most striking findings from this were not related to the immune system, but rather a 
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dysfunction of metabolism. While some of our findings have been previous described, such 

as the suppression of serum lipoproteins and T4 during severe infections, we also captured 

surprising signatures of metabolic dysfunction, specifically linked to mortality. The most 

salient of these was the apparent shift from ternary to binary IGF-IGFBP complexes, 

resulting in lower circulating IGF levels, and the increase of ACs and related molecular 

species in SaB mortality patients. The ultimate functional outcome of these perturbations is 

unclear; however, they may help uncover alternative therapeutic avenues by which to 

stabilize patients while providing antimicrobial treatments.

Finally, we demonstrated that stimulation of both thyroid and adiponectin signaling 

pathways can enhance mouse survival in experimental SaB. Previous studies into thyroid 

signaling suggest inhibition of macrophage migration inhibitory factor (Al-Abed et al., 

2011) or enhancement of intracellular bacterial killing (Chen et al., 2012) are responsible for 

its protective effects. In contrast, adiponectin is mainly studied for its role in insulin 

resistance and diabetes (Achari and Jain, 2017). However, it also has anti-inflammatory, 

cardio- and vaso-protective effects (Achari and Jain, 2017), and adiponectin KO mice are 

more susceptible to polymicrobial sepsis (Teoh et al., 2008). In agreement, our data indicate 

a protective role for adiponectin signaling in SaB infection. Importantly, both T4 (Tanguay 

et al., 2019) and AdipoRon (Okada-Iwabu et al., 2013) are orally bioavailable and T4 is 

FDA-approved. If T4 or AdipoRon could offer protection in humans, they may be explored 

as adjunctive approaches to antibiotics for treating SaB.

Overall, we aimed to set a high standard in the infectious disease biomarker field by 

providing an accurate, multi-omic model (including PTMs) for predicting SaB mortality. 

Conducting future studies to the same depth and rigor will likely uncover additional 

clinically useful findings and lead to a deeper understanding of mortality in infection. 

Ultimately, this study sets the groundwork for a multi-marker-based tool for the rapid 

prediction of SaB patient mortality at the time of clinical presentation - the Rapid Index of 

SaB Mortality Kinetics (RISK) test.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, David J. Gonzalez 

(djgonzalez@ucsd.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The proteomics data generated for this manuscript, 

including annotated spectra, have been deposited onto the ProteomeXchange archive 

through MassIVE under the following identifiers: Standard Proteomics (PXD018030), PTM-
tolerant Proteomics (PXD018031). Metabolomics data and molecular network are available 

on MassIVE (MSV000083593). All other data is available upon request.

The R scripts used for analysis in this manuscript are available upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Studies.—Patient serum or plasma samples were obtained from patients at the 

UW Health as part of the Staphylococcus aureus bacteremia immune response (SaBIR) 
study under Health Sciences Institutional Review Board (IRB) approved protocol #2018–

0098. UW Health is a 505-bed tertiary care, academic medical center located in Madison, 

Wisconsin. Patients, both male and female sex, between the ages of 18–89 years of age were 

eligible to be included in the biobank study. Patient samples were collected as part of routine 

medical care, and therefore a waiver of informed consent was permitted for study inclusion. 

The collection of subject data is provided in the Method Details section below.

Mouse Models.—All animal experiments were performed in accordance with national 

institutes of health (NIH) guidelines and approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of California San Diego. Eight-week-old female CD1 

mice were used for all animal experiments. Mice were housed 5 to a cage and randomly 

assigned into experimental groups.

METHOD DETAILS

Patient and Isolate Identification and Collection—Patients were identified with SaB 

for study inclusion by electronic notification of blood cultures growing S. aureus, identified 

by Matrix Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF, Bruker 

Scientific LLC, Billerica, MA, USA). Methicillin-resistance was identified using 

GeneXpert® test (Cepheid, Sunnyvale, CA, USA). Patients were included if at least two 

positive blood cultures were identified, or one positive culture was congruent with a clinical 

diagnosis of SaB from an Infectious Diseases Physician Specialist. This study did not 

analyze consecutive samples from SaB patients, but rather outcomes of death (ie. 

hospitalized, mortality [HM]; n=76) and survival (ie. hospitalized survival [HS]; n=99) were 

selected from the SaBIR biobank for multi-omic serum analysis. The other subject groups 

included non-hospitalized, non-infected healthy volunteers (NN; n=15), and hospitalized, 

non-infected patients (HN; n=10) at UW Health identified through the electronic medical 

record.

Patient serum samples were obtained on the same day of initial presentation of SaB, before 

antibiotic therapy initiation and often within 1 hour of blood culture. The samples were 

stored at −80 °C until analysis

Clinical Measurements and Outcomes—Patient electronic medical records were 

reviewed to collect basic demographics. Metadata variables are self-explanatory or defined 

as follows: CV - cardiovascular, BP - blood pressure, Dys - dysfunction, MAP - mean 

arterial pressure, SCr - serum creatinine, WBC -white blood cell count. The mean age was 

58.7±15.5 years and 49.1% of patients were male. In the SaB patient group, 33.2% were 

infected with MRSA and 66.8% had MSSA bacteremia, identified as above and confirmed 

by routine antimicrobial susceptibility testing in the clinical microbiology laboratory. Total 

duration of bacteremia included cases of persistent bacteremia (consecutive days of positive 

blood cultures) and in-hospital microbiologic relapse defined as recurrence of a positive 

blood culture after the first negative culture while receiving appropriate antibiotic. The 
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median duration of bacteremia duration was 2 days with an interquartile range of 1–4 days. 

All included patients received appropriate antimicrobial therapy for the treatment of MSSA 

(anti-staphylococcal β-lactam or vancomycin/daptomycin where needed for β-lactam 

allergic patients) and MRSA bacteremia (vancomycin or daptomycin).

Serum Metabolite Extraction.—All steps for this protocol are to be done on ice. Serum 

samples (100 μl) were thawed for 30 mins, then 400 μl of prechilled extraction solvent 

(100% MeOH with 1μM sulfamethazine as an internal standard) was added to each sample. 

Samples were mix using a vortexer for 2 minutes (min) then incubated at −20 °C for 20 min 

to aid in protein precipitation. Samples were centrifuged the samples at 16,000 × g for 15 

min to pellet the protein precipitate. The supernatant was transferred into 96-Well DeepWell, 

dried using centrifugal low-pressure system and stored at −80 °C once dry.

Metabolomic LC-MS2 Analysis.—Metabolomic LC-MS2 was performed on a Bruker 

Daltonics® Maxis qTOF mass spectrometer (Bruker, Billerica, MA USA) with a Thermo 

Scientific UltiMate 3000 Dionex UPLC (Fisher Scientific, Waltham, MA USA). Plates were 

organized so that each row started with a blank and contained 1 – 2 controls, 4 – 7 HS 

samples and 3 – 5 HM samples in a random order. Metabolites were separated using a 

Phenomenex C18 core shell (50 × 2 mm, 1.7 μm particle size) UHPLC column fitted with a 

C18 guard cartridge. The mobile phase solvents (solvent A, water-0.1% formic acid; solvent 

B, acetonitrile-0.1% formic acid) were run at a flow rate of 0.5 ml/min and chromatographic 

separation was achieved using the following elution gradient: 0 to 1 min 5% B, 1 to 10 min a 

linear increase from 5 to 100% B, 10 to 12 min held at 100% B, 12 to 12.5 min a linear 

decrease from 100 to 5% B, and 12.5 to 13 min maintained at 5% B. The mass spectrometer 

was calibrated twice daily using Tuning Mix ES-TOF (Agilent Technologies). For accurate 

mass measurements, lock mass internal calibration used a wick saturated with hexakis (2,2-

difluoroethoxy)phosphazine (Synquest Laboratories, m/z 622.0289) located within the 

source. Ions were generated using the following parameters: nebulizer gas pressure, 2 Bar; 

Capillary voltage, 3,500 V; ion source temperature, 200°C; dry gas flow, 9 l/min; spectra 

rate acquisition, 3 spectra/s. Full scan MS spectra (m/z 50 – 1500) were acquired in the 

qTOF and the top five most intense ions in a particular scan were fragmented using a ramped 

collision induced dissociation (CID) energy from 10 – 50 eV. Data dependent automatic 

exclusion protocol was used so that an ion was fragmented when it was first detected, then 

twice more, but not again unless its intensity was 2.5x the first fragmentation. This exclusion 

method was cyclical, being restarted after every 30 seconds.

Metabolite Molecular Networking and Identification by GNPS—Metabolomics 

data files were converted to the .mzXML format using the Bruker Data Analysis software 

and uploaded to GNPS(Wang et al., 2016) through the MassIVE server (MSV000083593). 

Molecular networking was optimized as previously described (Scheubert et al., 2017) to an 

estimated false discovery rate of 1%. The data was filtered by removing all MS2 fragment 

ions within +/− 17 Daltons (Da) of the precursor m/z. MS2 spectra were window filtered by 

choosing only the top 6 fragment ions in the +/− 50 Da window throughout the spectrum. 

The precursor ion mass tolerance was set to 0.05 Da and an MS2 fragment ion tolerance of 

0.05 Da. A network was then created where edges were filtered to have a cosine score above 
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0.59 and more than 6 matched peaks. Spectra were searched against the spectral libraries 

contained within GNPS. The library spectra were filtered in the same manner as the input 

data. All matches kept between network spectra and library spectra were required to have a 

score above 0.7 and at least 6 matched peaks. In addition to the level 2 or 3 annotations 

based on the 2007 metabolomics standards initiative (Sumner et al., 2007) generated through 

molecular networking, CSI:FingerID (Duhrkop et al., 2015) was used for molecular 

fingerprint identification through a fragmentation tree approach and subsequently spectra 

were annotated for chemical ontology through ClassyFire (Djoumbou Feunang et al., 2016). 

It is important to note here that our list of 5000+ metabolites is somewhat inflated due to 

related features that may not correspond to bone fide metabolite species; however, these 

occurrences are readily visible in the GNPS networks (gnps.ucsd.edu - MSV000083593 - 

edges with high correlation and mass shifts of 0). A more stringent estimation of total 

number molecular species (3310) can be derived from the total number of molecular 

networks (310) and non-networked features (3000).

MS1 area under the curve feature abundances were used for quantification and to produce a 

metabolome bucket-table with the mzMine software (Pluskal et al., 2010). MzMine modules 

were used with the following settings. Peak mass detection: 1E3 MS1 noise level, 1E2 MS2 

noise level. Chromatogram deconvolution: Local minimum search algorithm: 0.2 min 

minimum retention time (RT) range, 3 min ratio of peak top/edge, 0.05 – 0.5 min peak 

duration range, 0.05 Da m/z range for MS2, and 0.2 min RT range for MS2. Isotopic peak 

grouper: 0.05 m/z tolerance, 0.1 min RT tolerance, maximum charge 4. Join aligner: 0.01 

m/z tolerance, 0.3 min RT tolerance, 75% weight for m/z, 25% weight for RT, 2 minimum 

peaks per row. Gap filling: 20% Intensity tolerance, 0.01 m/z tolerance, 0.2 min RT 

tolerance. Peak filter: Area 1E3 − 1E12. The abundances of each feature in the final bucket-

table were normalized first by abundance of the internal standard (1 uM sulfamethazine) 

within each sample and next by the total ion intensity of each sample.

Serum Protein Digestion and Labeling.

Protein Digestion.: 100 μl of serum proteins were denatured by addition of 100 μl 8 M urea, 

50 mM HEPES. Proteins were reduced and alkylated with dithiothreitol (DTT) and 

iodoacetamide (IAA), respectively (Haas et al., 2006), then methanol/chloroform 

precipitated. Proteins were re-solubilized in 1 M urea in 50 mM HEPES and 25 mM 

ammonium bicarbonate (pH 8.5) and digested in a two-step process (LysC and Trypsin). 

Digested peptides were then desalted with C18 Sep-Paks (Tolonen and Haas, 2014).

TMT Labeling.: Samples were labeled with TMT 10-plex reagents (McAlister et al., 2012; 

Thompson et al., 2003) for multiplexed quantitative proteomics. TMT reagent channel 126 

was reserved for bridge channels, and the remaining reagents were used to label pure sample 

digests. The efficient combining of MS data from 22 separate 10-plex experiments largely 

depends on the proper partitioning of samples into each 10-plex. Ideally, each 10-plex 

should be as similar as possible. Thus, we partitioned the samples in a way that ensured each 

10-plex contained 1–2 control samples, 3–4 hospitalized mortality (HM) samples and 4–5 

hospitalized survival (HS) samples along with the pooled bridge channel. In this way, every 

peptide detected in a single 10-plex will provide quantification for at least 3 samples from 
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each of our infected groups (ie. HM and HS), By increasing the number of samples a protein 

is detected in per condition, this experimental design enables more robust statistical 

comparisons to be performed. Bridge channels consisted of an equal portion of each digest 

pooled together and then re-aliquoted into 50 μg portions for labeling. The bridge served as 

a means to control for experimental variation between mass spectrometry experiments. 

Labeling was conducted for 1 hr at RT and was quenched by addition of 9 μl of 5% 

hydroxylamine. Samples were then acidified by addition of 50 μl of 1% TFA, pooled and 

desalted with C18 Sep-Paks as described above.

Basic pH Reverse-phase Liquid Chromatography (bRPLC) Fractionation.—
Fractionation was carried out by bRPLC (Wang et al., 2011) with fraction combining as 

previously described (Lapek et al., 2017b; Tolonen and Haas, 2014). Samples were 

solubilized in 110 μl of 5% formic acid in 5% acetonitrile and 100 μl was separated on a 4.6 

mm × 250 mm C18 column on an UltiMate 3000 HPLC. The resultant 96 fractions were 

combined into 24 distinct fractions and dried prior to multiplexed LC-MS2/MS3 analysis. 10 

of the concatenated fractions were analyzed for each 10plex based on preliminary data 

indicating diminishing returns after analyzing 10 fractions.

Proteomic LC-MS2/MS3 Analysis—Peptides were resuspended in 5% acetonitrile/5% 

formic acid and analyzed on an Orbitrap Fusion Tribrid mass spectrometer with an in-line 

Easy-nLC 1000 System. Samples were loaded onto a 30 cm in-house pulled and packed 

glass capillary column (I.D. 100 μm, O.D. 350 μm). The column was packed with 0.5 cm of 

5 μm C4 resin followed by 0.5 cm of 3 μm C18 resin, then 29 cm of 1.8 μm of C18 resin. 

Following sample loading, peptides were eluted using a gradient ranging from 11 − 30% 

acetonitrile in 0.125% formic acid over 85 min at a flow rate of 300 nl/min and heating the 

column to 60 °C. Electrospray ionization was assisted by the application of 2,000 V of 

electricity through a T-junction connecting the column to the nLC. All data acquired were 

centrioded.

MS1 spectra were acquired in data dependent mode with a scan range of 500–1200 m/z and 

a resolution of 60,000. Automatic gain control (AGC) was set to 2 × 105 with a maximum 

ion inject time was 100 miliseconds (ms) and a lower threshold for ion intensity of 5 × 104. 

Ions selected for MS2 analysis were isolated in the quadrupole at 0.5 Th. Ions were 

fragmented using CID with a normalized collision energy of 30% and were detected in the 

linear ion trap with a rapid scan rate for low resolution spectra (eight 10-plexes; standard 

proteomic analysis). For high-resolution spectra (fourteen 10-plexes; standard proteomic and 

PTM analysis), ions were fragmented using higher-energy collision-induced dissociation 

(HCD) with a normalized collision energy of 30% and were detected in the Orbitrap with a 

resolution of 3 × 104. Multiple studies have supported high-resolution scans to be beneficial 

for PTM analyses (Chick et al., 2015; Devabhaktuni et al., 2019). Further, for glyco-peptide 

matching, the detection of low mass glycan reporter ions, which are efficiently captured 

using the HCD fragmentation scheme (Cao et al., 2014; Mayampurath et al., 2011), is useful 

for selecting glyco-peptide containing spectra prior to database searching. AGC was set to 1 

× 104 and the inject time was set to 35 ms.
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MS3 analysis was conducted using the synchronous precursor selection (SPS) option to 

maximize TMT quantitation sensitivity (McAlister et al., 2014). Up to 10 MS2 ions were 

simultaneously isolated and fragmented with HCD using a normalized energy of 50%. MS3 

fragment ions were analyzed in the Orbitrap at a resolution of 6 × 104. The AGC was set to 5 

× 104 using a maximum ion injection time of 150 ms. MS2 ions 40 m/z below and 15 m/z 

above the MS1 precursor ion were excluded from MS3 selection.

Peptide Identification by Proteome Discoverer.

Standard Proteomics Workflow.: Resultant data files were processed using Proteome 

Discoverer 2.1. MS2 data were queried against the Uniprot human database (downloaded: 

03/2019; 43,518 entries; contains isoforms and unreviewed entries, but fragments were 

removed) using the Sequest algorithm (Eng et al., 1994). A decoy search was also conducted 

with sequences in reversed order (Elias and Gygi, 2007; Elias et al., 2005; Peng et al., 2003). 

For MS1 spectra, a mass tolerance of 50 ppm was used and for MS2 spectra a 0.6 Da (for 

low-resolution spectra) or 0.05 Da (for high-resolution spectra) tolerance was used. Static 

modifications included TMT 10-plex reagents (+229.162932 Da) on lysine and peptide n-

termini and carbamidomethylation of cysteines (+57.02146 Da). Variable oxidation of 

methionine (+15.99492 Da) and deamidation of asparagine and glutamine (+0.984016 Da) 

were also included in the search parameters. Data were filtered to a 1% peptide and protein 

level false discovery rate using the target-decoy strategy (Elias and Gygi, 2007; Elias et al., 

2005; Peng et al., 2003). The minimum number of peptides required to quantify a protein 

was one based on the logic that the estimation of protein error rates are better evidence for 

protein presence than two peptides (Gupta and Pevzner, 2009). Following the initial analysis, 

the search was repeated for a focused database (1,088 entries). For TMT experiments, 

reporter ion intensities were extracted from MS3 spectra for quantitative analysis. Protein-

level quantitation values were calculated by summing signal to noise values for all peptides 

per protein meeting the specified filters (high confidence, non-rejected spectra with an 

average signal:noise > 10 and isolation interference < 25%). Data were normalized in a two-

step process as previously described (Lapek et al., 2017a). First, the values for each protein 

were normalized to the pooled bridge channel value. Then, the values were normalized to 

the median of each reporter ion channel.

PTM-tolerant Workflow.: While using standard collisional induced dissociation (CID) and 

taking low-resolution scans in the ion trap (IT) is a widespread MS strategy, PTM 

identification and localization is optimally derived from high-resolution mass spectra taken 

in the Orbitrap (OT) mass analyzer (Chick et al., 2015; Devabhaktuni et al., 2019). Further, 

the use of glycan reporter ions to identify glycopeptide-containing spectra requires higher-

energy collisional dissociation (HCD) fragmentation (Cao et al., 2014; Mayampurath et al., 

2011). Therefore, we employed the use of an HCD-OT MS workflow for this PTM analysis. 

High resolution MS2 data from proteomic experiments were submitted to molecular 

networking via GNPS as described above. Overrepresented mass shifts, as determined by the 

total number of network edges corresponding to each mass shift, were selected as 

modifications to include in a PTM-tolerant search. Mass shifts ultimately included in the 

search were selected based on the number of observed edges (> 100) and if the PTM identity 

(inferred from unimod.org) had been previously detected in proteomic experiments. MS2 
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data were queried against a focused human serum proteome database (proteins detected in 

standard search, 1,088 entries) using Byonic (Bern et al., 2012). A decoy search was also 

conducted with sequences in reversed order (Elias and Gygi, 2007; Elias et al., 2005; Peng et 

al., 2003). For MS1 spectra, a mass tolerance of 50 ppm was used and for MS2 spectra a 0.05 

Da tolerance was used. Static modifications included TMT 10-plex reagents (+229.162932 

Da) on peptide n-termini and carbamidomethylation of cysteines (+57.02146 Da). Variable 

modifications were specified using Modification Fine Control. Variable modifications 

included: deamidation (+0.984016 Da) of asparagine and glutamine, oxidation (+15.99492 

Da) of methionine, tryptophan and histidine, formylation (+27.994915 Da) of lysine, 

dioxidation (+31.989829 Da) of tryptophan, carbamylation (+43.005814) of lysine and 

arginine and dihydroxyimidazolidine (+72.021129 Da) of arginine. Spectra that contained 

low-mass glycan reporter ions as determined by the IMP-glycan reporter node were 

submitted to a glyco-peptide search with the following modification parameters. Static 

modifications included: TMT 10-plex reagents (+229.162932 Da) on peptide n-termini and 

lysines and carbamidomethylation of cysteines (+57.02146 Da). Variable modifications 

included: oxidation (+15.99492 Da) of methionine and glycosylation (57 common human N-

glycans(Bern et al., 2012; Clerc et al., 2016) - various Da) of asparagine. Glycan structures 

were inferred from the monosaccharide compositions in accordance with common serum 

glycans. Reporter ion intensities for modified peptides were summed to the unique peptide 

level then normalized as above. PTMs were localized in the context of the total protein 

length and flanking sequences were extracted using the PTMphinder R package (Wozniak 

and Gonzalez, 2019).

Statistical Analyses of MS Data

Binary Comparisons:  First, binary comparisons were used to identify biomarkers for the 

prediction of SaB mortality. Two types of binary analyses were used, Mann-Whitney U 

(MWU) tests, which has been shown to be effective for biomarker selection (Dakna et al., 

2010), and an ensemble feature selection (EFS) approach, which can reduce biases of any 

individual feature selection method (He and Yu, 2010). MWU tests were implemented in 

Excel using the RealStats package and EFS was implemented in R using the EFS package 

(Neumann et al., 2017). The EFS approach combines MWU tests, logistic regression, 

Pearson and Spearman correlations and two random forest algorithm implementations, 

cforest and randomForest, into a single, rank-able score. Biomarkers were ultimately ranked 

by the average score from both binary comparison analyses (Tables S2–3).

Metadata Assessment:  An R script was written to determine the association of quantified 

features with patient metadata. First, the metadata was split into two groups, categorical 

metadata and continuous metadata. Categorical metadata associations were determined using 

MWU test (2 categories) or Kruskall-Wallis test (>2 categories). Continuous metadata 

associations were determined using Pearson correlation. All tests were performed using base 

R functions. Metadata associations displayed in figures represent the −log10(p-value) 

reported from each test.

K-means Clustering:  In addition to ranking biomarkers using binary comparisons, we 

performed multi-class analyses to consider the control groups (NN and HN) in addition to 

Wozniak et al. Page 21

Cell. Author manuscript; available in PMC 2021 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the infected samples (HS and HM). First, we employed K-means clustering to group 

proteins with similar expression profiles across our four major patient groups (NN, HN, HS, 

HM). Prior to clustering, proteins were filtered for significant differences using uncorrected, 

ANOVA p < 0.05. The optimal number of clusters was determined using the elbow method. 

Benjamini-Hochberg corrected p-values are also provided (Table S2–3), but all features with 

uncorrected ANOVA p < 0.05 were included in figures and downstream analyses (ie. gene 

ontology/network analyses) because these tools work best with protein lists larger than 50 

(Huang da et al., 2009; Mi et al., 2013).

LASSO Regression:  Second, we employed a LASSO regression algorithm to select the 

minimum set features required to classify the four sample groups. The initial feature space 

displayed significant missingness (average missingness was 48.55% for proteomics and 

40.70% for all metabolomics) and thus missing values were imputed prior to regression 

analyses. Before imputation, features having >50% missingness were conservatively 

dropped for not having enough information to confidently infer new values, leaving 504 

proteomic and 3082 metabolomic features in total. Fast missing value imputation was 

implemented by chained random forests within each individual dataset using the missRanger 

R package (https://github.com/mayer79/missRanger). Briefly, each missing value was 

imputed by a random forest built on all other features as co-features; this process is iterative, 

such that it continues multiple times across all features until the average out-of-bag (OOB) 

prediction error plateaus. It leads to imputations with realistic variability, similar to 

stochastic regression imputation, but is much faster and computationally efficient across 

thousands of features.

After fast imputation by chained random forests on each data set, they were separately 

scaled to Z-scores and concatenated for regularized (L1 norm) machine learning approaches. 

Subsequent regularized machine learning was done using the caret (http://topepo.github.io/

caret/index.html) and glmnet(Friedman et al., 2010) R packages to train, test, and evaluate 

LASSO logistic classification models. The mathematical details of LASSO are 

comprehensively described elsewhere (Friedman et al., 2010). The basic idea is that models 

are penalized for both overall predictive performance and the size of the resultant feature set 

used to make those predictions. Due to small cohort sizes in NN and HN groups (n=13 and 

n=10, respectively), 10-fold cross-validation was used to estimate group discriminative 

performance rather than traditional train-test splits. Using the LASSO parameterization 

(alpha=1), models were tuned on a search grid of lambda values: 0.001 to 0.3 by steps of 

0.01. Models were optimized for the highest area under the ROC curve (AUROC), which for 

multiclass comparisons was calculated as the average AUROC across all applicable one-

class-versus-all-others comparisons. Feature importance and the overall LASSO proteomic-

metabolomic signature (length=98 features: 32 proteomic, 68 metabolomic) was obtained 

using the varImp() in caret and keeping any features with non-zero importance values. 

Overall model performance and its confusion matrix was determined by examining the 

predictions on samples left out during their kth fold and their ground truth using the caret 

and MLmetrics (https://github.com/yanyachen/MLmetrics) packages.
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Multi-omic data integration:  Finally, for multi-omic data integration, we implemented the 

mixOmic data analytics pipeline (Rohart et al., 2017). This method extends the Generalized 

Canonical Correlation Analysis (Tenenhaus et al., 2017) framework with a generalized, 

supervised partial least squares (PLS) approach to integrate multiple data types across the 

same group of subjects with known phenotypes while identifying key omics variables in the 

process. The mathematical details are described in the associated paper (Rohart et al., 2017). 

Imputed proteomic and metabolomic data, as described above, were utilized for this analysis 

with a labeled class vector composed of their sample group (NN: n=13, HN: n=10, HS: 

n=99, HM: n=76; n=198 total). The design matrix was built with link weights of 0.1 

between the proteomic and metabolomic data (as seen: http://mixomics.org/mixdiablo/case-

study-tcga/). The model was then first fit using 10-fold cross-validation, repeated 10 times in 

order to determine the optimal number of components for the final model (that is, the 

number of components that leads to the lowest classification error rate). The optimal number 

of components was determined to be 4. The final model was subsequently used for plot 

generation.

Gene Ontology (GO) and Network-based Analyses—Proteins subsets identified 

through various computational approaches were subjected to GO and network-based 

analyses using the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) (Huang da et al., 2009; Huang et al., 2007) and STRING-db (Szklarczyk et al., 

2019) tools, respectively. For GO analysis, lists of interesting proteins were submitted for 

enrichment analysis using all the proteins detected in the experiment as a background 

dataset. All GO terms displayed in the figures had a p < 0.05. For network-based analyses, 

protein lists were submitted to the STRING-db tool (all active interaction sources, 

interaction score > 0.8). The network was exported into a simple tabular output, reformatted 

to display desired parameters (eg. K-means clusters), then imported into Cytoscape 

(Shannon et al., 2003) for visualization.

Network-based Cytokine Inference.: Knowledge-based networks were used to infer the 

relative contributions of major cytokines on the observed proteomic alterations. First, a list 

of cytokines was manually curated (TGFb, TNF, IFN, IL1–40, CXCL1–16, CCL1–27) and 

submitted with the significantly altered proteins (uncorrected ANOVA p < 0.05) to the 

STRING-db tool (all active interaction sources, interaction score > 0.4). The network was 

exported into a simple tabular output and cytokines were profiled for their enrichment in 

mortality clusters (pMortality+, pMortality− and pMortality−−) using the following 

approach. First, cytokines were filtered to have at least five connections to mortality 

networks. Then, the proportion of each cytokine within the mortality clusters (ie. number of 

cytokine-mortality cluster connections relative to the total connections within mortality 

clusters) was compared to the proportion of each cytokine in the entire dataset (ie. number of 

cytokine-protein connections relative to total connections within the entire dataset). 

Significance was determined using Chi-squared tests and a fold-change was calculated by 

dividing the proportion of cytokine-mortality connections by the proportion of cytokine 

connections within the total dataset. A final enrichment score was calculated by multiplying 

the −log10(p-value) from the Chi-squared test by the log2(fold-change of enrichment). By 

including the total number of connections that each cytokine had in the entire dataset as a 
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background, any enrichment bias due to higher annotation rates for popular cytokines in 

STRING-db is controlled for.

To benchmark the cytokine inference approach mentioned above, we compared the results to 

Ingenuity Pathway Analysis (IPA – Qiagen). IPA receives a list of proteins and calculates 

upstream regulator enrichment based on the overlap of target proteins in the submitted list 

and reports a p-value for significance. For all cytokines reported by both tools, the −log10(p-

value) from IPA was compared to the enrichment score from the cytokine inference 

approach using Pearson correlation. Additional, highly significant upstream regulators (p < 

0.001) of non-cytokine origin were manually curated from the IPA results for inclusion in 

the manuscript.

Mouse Model of SaB—8-week old female CD1 mice were used for all animal 

experiments. Mice were treated before infections as follows or with vehicle controls. 

Hyperthyroid mice were given I.P. injections of 100 μg thyroxine (T4) once daily for the 

three days prior to infection. Hypothyroid mice were given drinking water containing 

hypothyroid treatment (1% (wt/vol) sodium perchlorate and 0.1% (wt/vol) methimazole) for 

three weeks prior to infections. Adiponectin mice were given I.P. injections of 1 mg/kg 

AdipoRon one day prior infection, then injected daily with AdipoRon for the duration of the 

experiment. Mice were then I.V. infected with S. aureus LAC (high dose (Fig 7B): 1×108 

CFUs, low dose (Fig 7C–H): 5×107 CFUs) and survival was monitored every 12 hours. For 

CFU burden experiments, mice were treated and infected as above, then euthanized 48 hours 

post-infection and organs were harvested for quantitation of bacterial burden.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were completed as described in the corresponding figure legends. Either 

GraphPad Prism, Microsoft Excel or R were used to conduct tests. Sample sizes for the 

validation cohort were determined based on a power calculation using example data from the 

preliminary cohort (α < 0.001; 1 − β = 0.95; n ≥ 45) and a review of the literature (n ≥ 50) 

(Skates et al., 2013). Significance was assessed using one or more of the following: Mann-

Whitney U test, analysis of variance (ANOVA), Pearson correlation test, ROC curves, or 

logistic regression. For ANOVA, Tukey’s multiple comparisons test was used. For all tests, 

significance values are denoted as follows: ****p < 0.0001; ***p < 0.001, **p < 0.01; *p < 

0.05, ns - not significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Multi-omic analysis of S. aureus bacteremia serum reveals early mortality 

signatures

• Modified peptides demonstrate enhanced predictive capabilities

• Cytokine inference predicts major underlying signaling networks

• Host metabolic responses represent actionable therapeutic targets
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Figure 1. Multi-omic Analysis of SaB Patient Serum.
(A) Workflow for SaB serum analysis. (B) Hierarchical clustering (Pearson) for proteins 

detected across all samples. (C) Abundance of SERPINA5 in control (gray: NN and HN) 

and infected samples (blue: HS; red: HM). (D) ROC curve of SERPINA5 (control vs. 

infected).
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Figure 2. Definition of High-confidence Biomarkers for the Prediction of SaB Patient Mortality.
(A) Top 25 EFS proteins (survival vs. mortality; ER_RF - error-rate based, Gini_RF - Gini 

index random forests). (B) Abundance and ROC curve of Fetuin B (survival vs. mortality). 

(C) Abundance and ROC curve of SVEP1 (survival vs. mortality). (D) Top 25 EFS 

metabolites (survival vs. mortality). (E) Abundance and ROC curve of metabolite ID-349 

(survival vs. mortality). (F) Abundance and ROC curve of metabolite ID-854 (survival vs. 

mortality). (G) Dual-omic ROC curve (survival vs. mortality; Protein: FETUB; Metabolite: 

ID-349; Combo: FETUB + IGFBP3 + ID-349 + ID-854). (H) ELISA abundance and ROC 

curve of Fetuin B (survival vs. mortality). (I) Survival curves of Fetuin B high (>2.2 μg/ml) 

and low (<2.2 μg/ml) patients. (J) Metadata assessment of Fetuin B. For B, C, E and F, 

Kruskal-Wallis tests with Dunn’s multiple comparison test significance is displayed. For H, 

MWU tests significance is displayed.
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Figure 3. PTM-tolerant Analysis of SaB Patient Serum.
(A) Pie chart of networked MS2 spectra. (B) Network edge histogram with top mass shifts 

highlighted. (C) Percent of MS2 spectra matched in both workflows. (D) Correlation of 

network edges and PTMs detected in PTM-tolerant workflow. (E) Abundance and ROC 

curve of AHSG N156 HexNAc(4)Hex(5)NeuAc(2) (control vs. infected). (F) Abundance 

and ROC curve of AHSG N156 HexNAc(4)Hex(5)NeuAc(1) (survival vs. mortality). (G) 

Fold-changes of total AHSG protein and glycosylations of N156 for infection and mortality 

samples. (H) Multi-omic ROC curve (survival vs. mortality). (I) Abundance of modified 

peptides assigned to the mortality-specific cluster. (J) Distribution of peptide counts and 

modifications types of albumin (ALB) and serotransferrin (TF). (K) Albumin mortality 

associated PTM plot depicting modified peptide abundance (left) and modified peptide 

abundance normalized to protein levels (right). For E and F, Kruskal-Wallis tests with 

Dunn’s multiple comparison test significance is displayed.

Wozniak et al. Page 35

Cell. Author manuscript; available in PMC 2021 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Clustering of Proteomics/Metabolomics Data into Disease-relevant Modules.
(A) K means clustered heatmap, (B) protein association network, and (C) module cross-talk 

network of all significantly altered proteins (ANOVA p<0.05) across the four primary 

groups. In B and C, nodes are colored as in A. (D) K means clustered heatmap, (E) 

molecular networking overview, (F) within network co-regulation pie chart, and (G) module 

cross-talk network of all significantly altered metabolites (ANOVA p<0.05) across the four 

primary groups. In E and G, nodes are colored as in D.
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Figure 5. Detection of Metabolic Dysfunction in SaB Mortality Patients.
Abundance of IGFBP (A) binary and (B) ternary complex members. (C) Abundance of IGFI 

and II. (D) Correlation matrix of IGF-related proteins. (E) Heatmap of apolipoprotein 

abundance. (F) Abundance of thyroxine-binding serum proteins. (G) Molecular network and 

(H) abundance of acyl-carnitines. In G and H, nodes and points are colored according to Fig 

4D. In G, nodes are sized according to ANOVA −log10(p-value). For A, B, C and F, ANOVA 

with Tukey’s multiple comparison test significance is displayed. For E and H, repeated 

measures one-way ANOVA with Holms-Sidak’s multiple comparison test significance is 

displayed.
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Figure 6. Knowledge-based Analysis of Cytokines Predicts Major Contributors to Proteomic 
Alterations and Identifies Core of Modulated Proteins.
(A) Schematic for cytokine inference analysis. (B) Correlation of the cytokine inference 

score and IPA upstream regulator analysis score. The Core-5 cytokines are highlighted 

according to their inflammatory actions (red – pro-inflammatory; blue – anti-inflammatory). 

(C) Edges between the Core-5 cytokines and each mortality-associated K-means cluster as 

determined by STRING-db. (D) Refined network of Core-5 cytokines and pMortality+ 

proteins. Protein nodes are sized according to −log10(p-value) determined via ANOVA and 

highlighted based their connections to pro-inflammatory cytokines (red), anti-inflammatory 

cytokines (blue) or both (purple). Cytokine node outlines and neighboring edges are colored 

based on pro-inflammatory (red) or anti-inflammatory (blue) activity. In A and C, heatmap, 

nodes and bars are colored as in Fig 4A.
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Figure 7. Thyroid and Adiponectin Signaling Contribute to SaB Mortality in vivo.
(A) Schematic for treatment plan and mouse model of SaB. (B) Survival curve of mice given 

hyperthyroid, hypothyroid or control treatments then infected. (C) Survival curve of mice 

given hypothyroid or control treatments then infected. CFUs recovered from the kidney (D) 

and heart (E) in hypothyroid or control mice 48 hrs after infection. (F) Survival curve of 

mice given AdipoRon or control treatments then infected. CFUs recovered from the spleen 

(G) and heart (H) in AdipoRon or control mice 48 hrs after infection. All infections were 

with 5×107 CFU S. aureus except for panel B (1×108 CFU). For D, E, G, and H, MWU test 

significance is displayed.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Lysyl Endopeptidase (LysC) Wako Labs 129–02541

Sequencing-grade Trypsin Promega Corporation V5113

Anhydrous Acetonitrile Sigma-Aldrich 271004

Tandem Mass Tags (TMT) Thermo Fisher 90110

50% Hydroxylamine Aldrich Chemistry 467804

C4 5 μm Stationary Phase Sepax 109045–0000

C18 3 μm Stationary Phase Sepax 101183–0000

C18 1.8 μm Stationary Phase Sepax 101181–0000

Critical Commercial Assays

Pierce™ Quantitative Colorimetric Peptide Assay Thermo Fisher 23275

Fetuin-B ELISA Kit RayBiotech ELH-FetuinB-1

IGFBP3 ELISA Kit RayBiotech ELH-IGFBP3–1

SERPIND1 ELISA Kit RayBiotech ELH-SERPIND1–1

Deposited Data

Standard Proteomics ProteomeXchange PXD018030

PTM Proteomics ProteomeXchange PXD018031

Metabolomics MassIVE MSV000083593

Experimental Models: Organisms/Strains

Mouse: 8-week old female CD1 Charles River CD1

Software and Algorithms

Proteome Discoverer (2.1) Thermo Fisher N/A

R Studio (1.1.463) R Studio N/A

Prism (7.0b) GraphPad N/A

Cytoscape (3.7.2) (Shannon et al., 2003) N/A

Ingenuity Pathway Analysis (01.16) Qiagen N/A

Other

Sep-Pak Cartridge 1 cc Waters WAT054960

HPLC Column Thermo Fisher 720105–254630

Fused Silica Capillary Tubing Polymicro Technologies 106815–0023

Orbitrap Fusion Tribrid Mass Spectrometer Thermo Fisher IQLAAEGAAPFADBMBCX
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