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During the cholera epidemics in the nineteenth cen-
tury, intravenous fluid infusion was observed “to restore 
the blood to its natural specific gravity and to restore its 
deficient saline matters” in the blue stage of spasmodic 
cholera [1]. It then became clear that fluid therapy during 
shock is aimed at increasing cardiac output (CO), ulti-
mately improving tissue oxygenation. However, during 
the 1980s, authors measuring the effects of fluid boluses 
on CO, found that it remained unchanged in roughly 50% 
of the patients [2]. In fact, they observed at the bedside 
a physiological reality: the relationship between CO and 
preload has a variable slope, depending on the preload 
level and, for a given preload, on ventricular contractil-
ity (Fig. 1A). In the 1980s, the concept of predicting fluid 
responsiveness before infusing fluids arose. For years, 
the central venous pressure (CVP) and other markers of 
cardiac preload have been used to guide the decision of 
administering a fluid bolus (Fig.  1B). Regrettably, many 
studies then and afterward showed that, on average, 
these static markers of preload do not indicate the slope 
of the Frank-Starling curve [3].

Methods to determine fluid responsiveness
The focus then shifted toward avoiding fluid infusion in 
patients who did not need it while aggressively infus-
ing it to those that did. Instead of the ineffective “static” 
preload variables (e.g., CVP), a dynamic approach was 
considered [5] in which cardiac preload was transiently 
altered by simple maneuvers, and their effect on stroke 
volume (SV) or any surrogate was assessed. Patients 

in whom they changed significantly were considered 
preload responsive (Fig. 1A).

The time-honored method to define volume respon-
siveness was the fluid challenge, i.e., to rapidly infuse 
300–500  mL of fluid and assess if CO increased ≥ 15%. 
However, if repeated in non-responsive subjects, such 
challenges carry the potential risk to induce volume accu-
mulation for which fluid removal may be later needed 
[6]. At the same time, the evidence was increasing that a 
positive fluid balance independently predicted mortality, 
especially during septic shock [7].

The first method that allows the prediction of fluid 
responsiveness without infusing a drop of fluid took 
advantage of heart–lung interactions. The respira-
tory variations in systolic arterial pressure in ventilated 
patients had been shown to be related to central blood 
volume. However, the calculation of the ∆up and ∆down 
parts of this variation during apnea had many drawbacks 
and did not gain popularity. In 2000, Michard et al. dem-
onstrated that during controlled mechanical ventilation, 
the respiratory pulse pressure variation (PPV), a reflec-
tion of SV variation (SVV), detects fluid responsiveness 
[8] (Fig. 1B). Subsequently, numerous studies confirmed 
the validity of PPV, while others described various surro-
gates for SV, whose respiratory variability predicts fluid 
responsiveness.

However, the numerous limitations of PPV soon 
became apparent. Spontaneous breathing, arrhyth-
mias, lower tidal volumes (Vt) used in acute respira-
tory distress syndrome and low pulmonary compliance, 
increased intra-abdominal pressure generate false posi-
tives and negatives [9], making PPV and SVV unusable in 
many patients with cardiovascular insufficiency. In 2004, 
changes in the inferior vena cava diameter were reported 
to predict fluid responsiveness [10, 11]. Unfortunately, 
superior and inferior vena cava distensibility share many 
limitations with PPV, and have limited predictive value 
[12].
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The passive leg raising (PLR) test was applied to cir-
cumvent the limits of PPV. The postural change, which 
was used for years in patients falling in collapse, tran-
siently transfers blood from the lower extremities and 
the splanchnic territory (~ 300  mL), increasing cardiac 
preload. In 2006, its ability to detect preload responsive-
ness was demonstrated, including in conditions invalidat-
ing PPV [13]. Since then, it has been widely validated.

Following PPV and SVV, other tests then explored the 
idea of using heart–lung interactions during mechanical 
ventilation, i.e., manipulating cardiac preload by chang-
ing the alveolar pressure and observe the effect on CO. 
The end-expiratory occlusion test, consisting of tempo-
rarily stopping the drop in preload caused by insufflation, 
was described in 2009 [14]. In 2017, the Vt challenge, a 
transient increase in Vt from 6 to 8 mL/Kg whose effects 
are assessed on PPV, was developed to circumvent its 
limitation in case of low Vt [15]. The respiratory systolic 
variation test, or the hemodynamic effects of sigh maneu-
vers are also based on cardiopulmonary interactions.

In 2011, considering potential fluid overload induced 
by the “classical” fluid challenge, Muller et  al. demon-
strated that a “mini-fluid challenge,” with only 100–
150 mL of fluid, also predicts volume responsiveness with 
less risk for fluid accumulation [16]. It has already been 
reasonably validated.

Clinical validation
In their initial description and validation, many tests and 
indices of volume responsiveness were judged relative 
to precise CO measurements. However, CO monitoring 
may be difficult to routinely use, and is both expensive 
and invasive. Subsequent studies focused on using non-
invasive CO estimates to monitor heart–lung interaction 
tests and PLR maneuvers. For example, for the PLR test, 
many non-invasive monitoring techniques may replace 
invasive CO measures, such as capnography, plethys-
mography, bioreactance or simple changes in PPV [9].

Also, the place of the fluid responsiveness prediction 
has been defined: useless in patients with obvious fluid 
losses, it is useful in patients at risk of fluid accumulation. 
Positive fluid responsiveness tests should only lead to 
fluid infusion if CO is considered too low. This should be 
assessed on organ function and markers of tissue hypoxia 
depending on the patient’s condition. The decision to 
administer a fluid bolus must not only be based on the 
presence of fluid responsiveness, but also the risk of fluid 
accumulation or thus fluid intolerance (Fig. 1C). It must 
also be reminded that the ultimate goal of fluid infusion 
is not to increase CO but to improve tissue oxygenation, 
which occurs inconstantly even in fluid responders [17]. 
Finally, the effects of a fluid bolus on CO are transient 
[18] and fluid responsiveness changes over time [19]. It 
should therefore be reassessed frequently.

The question is often asked about the relevance of these 
tests and indices in terms of prognosis. In the periop-
erative field, protocols guiding fluid loading based on 
preload responsiveness have shown to reduce compli-
cation rates. In critical care, the demonstration is much 
more difficult, because many factors influence progno-
sis. However, the implementation of preload responsive-
ness tests during septic shock has been demonstrated to 
reduce the total fluid balance [9].

Take‑home message
Predicting fluid responsiveness was born from a double 
observation, namely that fluids are both harmful and 
inconstantly effective. Assessing fluid responsiveness 
allows one to avoid the administration of a deleterious 
treatment to patients who do not need it, and give it 
when needed [5]. Using these dynamic measures in the 
most severely ill patients walks the tightrope between 
aggressive restoration of CO and fluid overload, allow-
ing for truly personalized treatment [20].

(See figure on next page.)
Fig. 1 Panel A: Tests and indices of preload responsiveness. The principle of the dynamic assessment of preload responsiveness is to observe spon-
taneous or induced changes in cardiac preload, and the resulting change in cardiac output, stroke volume or their surrogates. Some tests or indices 
use heart–lung interactions in mechanically ventilated patients, while some other mimic a classical fluid challenge. Diagnostic threshold and year of 
description are indicated. CO cardiac output, PPV pulse pressure variation. Panel B: Chronology of the main findings in the field of fluid responsive-
ness. PPV pulse pressure variation, SVV stroke volume variation. Panel C: Relationship between fluid responsiveness and fluid tolerance and the risk 
for fluid accumulation. Fluid tolerance can be defined as the degree to which a patient can tolerate administration of fluids without causation of 
organ dysfunction, and it fills in the continuum between fluid (un)responsiveness and fluid accumulation and overcomes their inherent limitations. 
It balances the focus from the downstream (i.e., organ perfusion) to upstream (i.e., venous congestion) impact of fluids during the resuscitation 
phase [4]. This may allow clinicians to potentially modify their strategy and provide a more personalized and individualized fluid resuscitation and 
de-resuscitation approach
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