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Background: Acinetobacter baumannii complex-caused bloodstream 

infection (ABCBSI) is a potentially fatal infection in intensive care units (ICUs). 

This study proposed an interpretable machine learning (ML) model to predict 

ABCBSI fulminant fatality.

Methods: A retrospective study of ICU patients with ABCBSI was performed in 

China from 2009 to 2020. Patients were stratified into two groups: those that 

suffered from fulminant sepsis and died within 48 h, and those that survived 

for more than 48 h. The clinical score systems and ML models with Shapley 

additive explanation (SHAP) were used to develop the prediction models. 

The ML model was internally validated with five-fold cross-validation, and its 

performance was assessed using seven typical evaluation indices. The top 20 

features ranked by the SHAP scores were also calculated.

Results: Among 188 ICU patients with ABCBSI, 53 were assigned to the non-

survival group and 135 to the survival group. The XGBoost model exhibited 

the greatest area under the receiver operating characteristic curve (AUC), 

which outperformed other models (logistic regression, AUC = 0.914; support 

vector machine, AUC = 0.895; random forest, AUC = 0.972; and naive Bayesian, 

AUC = 0.908) and clinical scores (Acute Physiology and Chronic Health 

Evaluation II (APACHE II), AUC = 0.855; Sequential Organ Failure Assessment 

(SOFA), AUC = 0.837). It also had a sensitivity of 0.868, a specificity of 0.970, an 

accuracy of 0.941, a positive predictive value of 0.920, a negative predictive 

value of 0.949, and an F1 score of 0.893. As well as identifying the top  12 

different important predictors that contribute to early mortality, it also assessed 

their quantitative contribution and noteworthy thresholds.

Conclusion: Based on the XGBoost model, early mortality in ABCBSI is 

estimated to be more reliable than other models and clinical scores. The 12 

most important features with corresponding thresholds were identified and 

more importantly, the SHAP method can be used to interpret this predictive 

model and support individual patient treatment strategies.
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Introduction

Bloodstream infection (BSI) is a major cause of infectious 
disease morbidity and mortality, and typically refers to a patient 
with systemic signs and symptoms of infection who has a positive 
blood culture (Timsit et al., 2020). Patients in the intensive care 
unit (ICU) are particularly predisposed to BSI, with a prevalence 
of ~15.2% (Vincent et al., 2020). Acinetobacter baumannii complex 
(ABC) has a high potential for nosocomial transmission, 
particularly in the ICU. In 2017, carbapenem-resistant 
Acinetobacter baumannii was listed among the antibiotic-resistant 
“critical priority pathogens” by the World Health Organization 
(Tacconelli et al., 2018). ABC-caused BSI (ABCBSI) is a critical 
problem in the ICU as it can cause sepsis or septic shock, and 
prolonged hospital stays, thus increased costs and mortality rates 
(Guo et al., 2016; Russo et al., 2019). The 2021 Surviving Sepsis 
Campaign (SSC) guidelines suggested that early identification and 
appropriate management in the initial hours after the development 
of sepsis can improve outcomes (Evans et al., 2021). However, it is 
still unclear whether fulminant sepsis is more likely to result in 
higher mortality because of host- or treatment-related factors.

Prediction is common in the medical field, such as 
anticoagulation by risk scores, risk stratification of ICU patients, 
early-warning systems for sepsis, and superhuman imaging 
diagnostics (Chen and Asch, 2017). It is also common for 
clinicians to use regression analysis when testing causal hypotheses 
and recently, machine learning (ML) approaches have emerged 
from analyzing big data in medicine. Through learning the 
patterns of the health trajectories of large numbers of patients, the 
ML model can predict clinical events at an expert level, drawing 
from information well beyond the individual physician’s practice 
experience (Rajkomar et al., 2019). ML has been applied in several 
fields of ICU, with studies using big data to predict mortality in 
ICU patients, readmission, and the length of ICU stay, as well as 
the risks of developing sepsis and acute respiratory distress 
syndrome (ARDS; Gutierrez, 2020). Although ML models can 
provide more accurate predictions, they are still difficult to 
translate into medical practice, especially when applied to 
individual patients. One reason is that the ML model makes it 
harder to succinctly present or explain the subtle patterns behind 
a particular prediction, which is often called the “black box.” Thus, 
to better interpret changes in risk parameters on a continuous 
basis, we  need an interpretable ML model to rationalize the 
quantitative relationship between clinical parameters and 
outcome predictions.

The rapid diagnosis and treatment of BSI patients are crucial 
to their prognosis since timely and effective infection treatment 

can significantly improve outcomes (Civitarese et al., 2017; Timsit 
et  al., 2020). To early identify the potential risk factors which 
could predispose to a fulminant course of ABCBSI is essential, and 
it may help to provide an appropriate treatment to potentially 
reduce the risk of exacerbations. This study aimed to construct ML 
models to predict early mortality in ABCBSI and interpret the 
model using the Shapley additive explanation (SHAP) method so 
that the predictive model can not only predict the results but also 
provide reasonable explanations.

Materials and methods

Study population

This retrospective study was conducted in the First Affiliated 
Hospital, College of Medicine, Zhejiang University, from January 
2009 to December 2020. All ICU adult patients (age ≥18 years) 
diagnosed with ABCBSI were considered. The exclusion criteria 
were: (1) positive blood cultures before ICU admission; (2) 
patients who were not the first infected and no patient was 
included twice; (3) positive blood cultures containing other 
pathogenic microorganisms. The study was approved by the 
hospital Ethics Committees (IIT20210605A) and there was no 
need for informed consent because of the retrospective nature of 
the study.

Data collection and preprocessing of 
data

The following data were extracted from the patients’ medical 
records: demographic information, vital signs [temperature, mean 
arterial pressure (MAP), and PaO2/FiO2 (P/F) ratio], laboratory 
tests [white blood cells (WBCs), hemoglobin, platelets, albumin, 
alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), bilirubin, creatinine, blood urea nitrogen (BUN), 
C-reactive protein (CRP), prothrombin time (PT), activated 
partial thromboplastin time (APTT), PH, bicarbonate, lactate, 
sodium, potassium, chloride] at the onset of ABCBSI, invasive 
procedures before the acquisition of BSI, antibiotic exposure, 
antimicrobial susceptibility, antimicrobial therapy (time of 
initiation, doses, routes), the Pitt bacteremia score, Acute 
Physiology and Chronic Health Evaluation II (APACHE II) and 
Sequential Organ Failure Assessment (SOFA), and outcome.

Some variables were measured more than once so their 
maximum, minimum, and average values were further analyzed 
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as independent variables. The overall missing data rate was 
<0.05% among all the variables and average values were input for 
missing variables.

Machine learning

The predictive model was based on ML algorithms with the 
input of variables that different (p  < 0.1) in the univariate 
analysis between the non-survival and survival groups. Five 
ML algorithms were used: extreme gradient boosting 
(XGBoost), logistic regression (LR), support vector machine 
(SVM), random forest (RF), and naive Bayesian (NB). All 
analyses were performed using Python (version 3.9.10). The 
parameters of XGBoost can be divided into three types: general, 
booster, and task. General parameters define which kind of 
booster is used in the lifting process and the commonly used 
boosters are the tree model and linear model. This article uses 
a tree model, which is the default option. The maximum 
number of threads was defined as 6. The parameters for Tree 
Booster include the learning rate (eta = 0.01), the maximum 
depth of each tree (max_depth = 3), and the proportion of 
subsamples used to train the model in the whole sample set 
(subsample = 1). The main task was to solve a binary logistic 
regression problem (objective = binary: logistic). After building 
the model, the area under the receiver operating characteristics 
curve (AUC), sensitivity, specificity, accuracy, positive 
predictive value (PPV), negative predictive value (NPV), and 
F1 score were used as evaluation indicators of model 
performance. To select the optimal feature subset for the 
predictive model, 5-fold cross-validation was used for the 
training and validation set. Four of the five folds were used as 
the training set, and the remaining one was used as the 
validation set.

SHAP is a game-theoretic approach to explain the output of 
the ML model. It connects optimal credit allocation with local 
explanations using the classical Shapley values from game theory 
and their related extensions. Shapley values are a widely used 
approach from cooperative game theory with desirable properties. 
SHAP values are a unified approach for explaining the outcome of 
our ML model and provide consistent and locally accurate 
attribution values for each feature (Lundberg et al., 2018; Tseng 
et al., 2020).

Statistical analysis

Continuous variables are expressed as mean ± standard, and 
categorical variables are expressed as proportions. The variables 
were compared by Student’s t-test, the Mann–Whitney test for 
continuous variables, and the χ2 test or Fisher’s exact test for 
categorical variables, respectively. A two-sided value of p < 0.05 
was considered statistically significant. Python (version 3.9.10) 
was used for the statistical analysis and visualizations.

Results

Demographic and clinical characteristics

This study included 188 ICU patients with ABCBSI from 2009 
to 2020 and their demographic and clinical characteristics are 
presented in Table 1. Overall, 28.2% (53/188) of patients with 
fulminant sepsis died within 48 h.

Compared to the survival group, the non-survival group was 
more likely to have hematological malignancy, prior exposure to 
carbapenems and anti-fungal agents, receive mechanical 
ventilation, have septic shock, immunosuppression, and higher 
clinical scores assessed by the Pitt bacteremia, APACHE II, and 
SOFA scores at the time of BSI. In addition, decreases in MAP, P/F 
ratio, platelets, and PH and elevated creatinine, BUN, CRP, PT, 
APTT, lactate, sodium, and chloride were associated with 
early death.

Model building and evaluation

Twenty-six features (p < 0.1) in the univariate analysis between 
the two groups were chosen as the input variables in our ML 
model to predict early death. The results showed that the largest 
AUC (0.977) to predict early mortality was constructed by 
XGBoost. The XGBoost model performance was superior to other 
models (LR, AUC = 0.914; SVM, AUC = 0.895; RF, AUC = 0.972; 
and NB, AUC = 0.908) and the conventional clinical scores 
(APACHE II, AUC = 0.855; SOFA, AUC = 0.837; Figure 1).

The XGBoost model exhibited good performance by other 
evaluation indices, which included sensitivity of 0.868, a specificity 
of 0.970, an accuracy of 0.941, a positive predictive value of 0.920, 
a negative predictive value of 0.949, and an F1 score of 0.893. 
Table 2 shows the comparison of the predictive performance of 
different ML models.

Explanation of risk factors

The SHAP summary was plotted for an overview of which 
features are most important for our XGBoost model. Figure 2A 
shows the top  20 risk factors in our model and the red color 
represents high feature value, while the blue color is the opposite. 
From top to bottom, the overall influence of features on the final 
prediction gradually decreases. For example, increases in 
creatinine have a positive impact and push the prediction toward 
mortality, whereas increases in PH have a negative impact and 
push the prediction toward survival. Figure 2B shows the top 20 
important features evaluated by the average absolute SHAP value, 
the top  12 of which seem to be  particularly important in our 
model. The level of creatinine had the strongest predictive value 
for all prediction horizons, followed closely by the APACHE II 
score, SOFA score, PH, and P/F ratio. Figures 2C,D show the 
individual force plots for patients who did not survive and 
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TABLE 1 Baseline characteristics.

Features Survival (n = 135) Nonsurvival (n = 53) Value of p

Clinical parameters

Age (year) 61.4 ± 17.6 59.5 ± 15.7 0.509

Male n (%) 99 (73.3%) 37 (69.8%) 0.627

Vital signs

Temperature (°C) 38.7 ± 1.1 38.8 ± 1.0 0.294

MAP (mm Hg) 70.4 ± 12.2 59.4 ± 13.0 <0.001

P/F ratio 272.0 ± 131.2 130.5 ± 96.4 <0.001

Underlying diseases

Hypertension 52 (38.5%) 19 (35.8%) 0.734

Diabetes mellitus 23 (17.0%) 9 (17.0%) 0.993

Solid-organ malignancy 26 (19.3%) 9 (17.0%) 0.718

CAD 21 (15.6%) 10 (18.9%) 0.582

CRF 22 (16.3%) 9 (17.0%) 0.909

Liver cirrhosis 8 (5.9%) 6 (11.3%) 0.338

COPD 25 (18.5%) 10 (18.9%) 0.956

Hematological malignancy 4 (3.0%) 9 (17.0%) 0.002

Cerebrovascular disease 14 (10.4%) 3 (5.7%) 0.465

CTD 14 (10.4%) 4 (7.5%) 0.554

Laboratory parameters

WBCs (×109 L−1) 14.5 ± 10.5 11.2 ± 12.0 0.070

Hemoglobin (g dL−1) 8.1 ± 2.0 8.5 ± 2.2 0.295

Platelets (×109 L−1) 154.1 ± 132.1 58.0 ± 70.8 <0.001

Albumin (g L−1) 31.2 ± 4.7 29.0 ± 5.8 0.010

ALT (U L−1) 72.9 ± 125.9 121.8 ± 254.8 0.187

AST(U L−1) 76.8 ± 152.6 169.0 ± 438.7 0.140

Bilirubin (μmol L−1) 54.2 ± 97.0 71.2 ± 73.8 0.249

Creatinine (μmol L−1) 91.1 ± 86.3 123.7 ± 92.7 0.023

BUN (mmol L−1) 10.8 ± 6.4 16.5 ± 11.5 <0.001

CRP (mg L−1) 116.0 ± 74.2 166.0 ± 117.0 0.005

PT (s) 14.3 ± 3.2 18.3 ± 8.0 0.001

APTT (s) 47.3 ± 22.0 59.5 ± 29.7 0.008

pH 7.4 ± 0.1 7.2 ± 0.2 <0.001

Bicarbonate (mmol L−1) 24.0 ± 6.5 25.4 ± 34.6 0.762

Lactate (mmol L−1) 2.9 ± 2.1 6.9 ± 4.7 <0.001

Sodium (mmol L−1) 137.3 ± 6.5 141.7 ± 8.5 0.001

Potassium (mmol L−1) 3.8 ± 0.6 3.8 ± 0.7 0.977

Chloride (mmol L−1) 103.0 ± 6.2 106.3 ± 7.9 0.002

Invasive procedures

Mechanical ventilation 110 (81.5%) 50 (94.3%) 0.026

Central venous catheter 102 (75.6%) 42 (79.2%) 0.591

CRRT 48 (35.6%) 23 (43.4%) 0.318

PICCO 14 (10.4%) 10 (18.9%) 0.116

Previous antibiotic used (within 1 month)

Corticosteroid use 27 (20.0%) 16 (30.2%) 0.135

Anti-pseudomonal penicillins + beta lactamase inhibitors 81 (60.0%) 33 (62.3%) 0.775

Antipseudomonal cephalosporins 27 (20.0%) 16 (30.2%) 0.135

Aminoglycosides 8 (5.9%) 3 (5.7%) 1.000

Carbapenems 85 (63.0%) 42 (79.2%) 0.032

Quinolone 36 (26.7%) 21 (39.6%) 0.082

Tigecycline 15 (11.1%) 6 (11.3%) 0.967

(Continued)
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survived, respectively. The red features (on the left) indicate 
increased mortality risk, and the blue features indicate decreased 
mortality risk. For example, this patient (Figure 2C) is predicted 
to have a 322% risk of a poor outcome due to the elevated 
creatinine (114 μmol L−1), sodium (157 mmol L−1), APTT (30.6 s), 
APACHE II score (40 points), SOFA score (15 points), and lactate 
(3.8 mmol L−1) level, and decreased PH (7.28). Creatinine is the 
most important risk-increasing variable and platelets (97 × 109 L−1) 

are the most important protective variable. The patient (Figure 2D) 
was predicted to survive due to a lower APACHE II score (18 
points), SOFA score (nine points), and normal PH (7.43), platelets 
(147 × 109 L−1), and P/F ratio (286.7) level. The APACHE II score 
is the most important risk-decreasing variable.

Figure 3 shows the SHAP dependence plot of the top 12 most 
important variables, showing that higher creatinine, APACHE II, 
SOFA, lactate, and sodium and lower PH, P/F ratio, platelets, 

FIGURE 1

The AUC of different machine learning models and clinical scores in predicting early mortality. The results show that the XGBoost exhibited the 
largest AUC (0.977).

TABLE 1 (Continued)

Features Survival (n = 135) Nonsurvival (n = 53) Value of p

Anti-fungal agents 50 (37.0%) 29 (54.7%) 0.027

Carbapenem-resistant strains 119 (88.1%) 52 (98.1%) 0.063

Concurrent infection with another pathogen 55 (40.7%) 18 (34.0%) 0.391

Septic shock 51 (37.8%) 42 (79.2%) <0.001

Immunosupression 43 (31.9%) 31 (58.5%) 0.001

Appropriate empirical therapy 34 (25.2%) 7 (13.2%) 0.074

Length of ICU stay before BSI 15.0 ± 43.0 7.7 ± 10.1 0.224

Severity of illness

CCI 2.3 ± 2.2 2.5 ± 2.4 0.555

APACHE II scorea 22.1 ± 8.8 34.9 ± 9.3 <0.001

SOFA scorea 8.8 ± 4.4 15.7 ± 5.0 <0.001

Pitt bacteremia scorea 4.5 ± 2.9 7.5 ± 2.5 <0.001

Data are n (%) or mean ± SD. MAP, mean arterial pressure; P/F, PaO2/FiO2; CAD, coronary artery disease; CRF, chronic renal failure; COPD, chronic obstructive pulmonary disorder; 
CTD, connective tissue disorder; WBCs, white blood cells; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CRP, C reactive protein; CRRT, 
continuous renal replacement therapy; PICCO, pulse index continuous cardiac output; ICU, intensive care unit; BSI, bloodstream infection; CCI, charlson comorbidity index; APACHE, 
acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment. p < 0.05, which are considered statistically significant. aAt the onset of ABCBSI.
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WBCs, APTT, BUN, and albumin levels were related to higher 
mortality. The SHAP values for these features exceed zero, 
representing an increased risk of early mortality, so each feature 
has a cut-off point when a horizontal line is drawn.

Discussion

Acinetobacter baumannii complex is a group of 
nosocomial pathogens and one of the six leading multidrug-
resistant pathogens causing deaths in hospitals worldwide 
(Murray et al., 2022). It is responsible for a variety of clinical 
manifestations, of which ventilator-associated pneumonia 
(VAP) and BSI are the most common. ICU clinicians pay the 
most attention to BSI caused by ABC because it can cause 
sepsis and septic shock which are associated with more poor 
outcomes. A previous systematic review and meta-analysis 
including 10 studies reported that the pooled mortality of 
patients with ABCBSI was ~56.3% (Du et  al., 2019). The 
mortality risks for ABCBSI include old age, malignancy, 
chronic renal disease, chronic liver disease, neutropenia, 
septic shock, immunosuppressant use, total parenteral 
nutrition, ICU stay, previous antibiotic use, Pitt bacteremia 
score, APACHE II score, SOFA score, lower albumin levels, 

A

C

D

B

FIGURE 2

Feature analysis of the XGboost model. (A) A summary plot of the SHAP values for the top 20 features of our model. (B) The importance ranking of 
the top 20 variables according to the average absolute SHAP value. (C,D) The interpretation of model prediction results with the two samples. 
APACHE II, Acute Physiology and Chronic Health Evaluation II; SOFA, Sequential Organ Failure Assessment; P/F, PaO2/FiO2; WBCs, white blood 
cells; APTT, activated partial thromboplastin time; BUN, blood urea nitrogen; CRP, C-reactive protein; PT, prothrombin time; MAP, mean arterial 
pressure.

TABLE 2 Comparison of the predictive performance of different ML.

Model AUC SE SP AC F1 
score

PPV NPV

XGBoost 0.977 0.868 0.970 0.941 0.893 0.920 0.949

LR 0.914 0.375 0.900 0.789 0.429 0.500 0.844

SVM 0.895 0.375 0.933 0.816 0.462 0.600 0.848

RF 0.972 0.500 0.900 0.816 0.533 0.571 0.871

NB 0.908 0.625 0.933 0.789 0.556 0.500 0.893

ML, machine learning; AUC, The area under the receiver operating characteristic curve; 
SE, sensitivity; SP, specificity; AC, accuracy; PPV, positive predictive value; NPV, 
negative predictive value; XGBoost, extreme gradient boosting; LR, logistic regression; 
SVM, support vector machine; RF, random forest; NB, naive Bayesian.
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bacteremia origin, carbapenem resistance, and inappropriate 
initial antimicrobial therapy (Du et  al., 2019; Russo et  al., 
2019; Zhou et al., 2019; Son et al., 2020; Gu et al., 2021; Yu 
et al., 2021). However, previous studies mainly focused on 
testing hypotheses involving causal relationships and the 
predictive effect of conventional regression analysis methods 
may be unsatisfactory because it is mainly used to solve linear 
problems and is difficult to fit the real distribution of data. 
Therefore, it is important to obtain a more accurate predictive 
model for mortality and the decision-making process of the 
model must be understood by the physician. A recent study 
developed an ML model to predict patient outcomes of BSI 
based on electronic medical records and the model AUC was 
0.81 using only 25 features (Zoabi et al., 2021).

In this study, we proposed an ML model using selected 
features for the prediction of ABCBSI fulminant fatality. The 
XGBoost model performed relatively better than other 
models (LR, SVM, RF, and NB) as well as conventional 
clinical scores (APACHE II and SOFA). Among the 26 
selected features in our model, the top 12 important features 
with absolute SHAP values were creatinine, APACHE II, 
SOFA, PH, P/F ratio, platelets, WBCs, APTT, BUN, albumin, 
lactate, and sodium, which increased or decreased the risk of 
early mortality of ABCBSI to varying degrees. Furthermore, 
the SHAP summary plot of XGBoost revealed additional 
important features (e.g., creatinine, APACHE II score, 

platelets, WBCs, APTT, albumin, lactate, etc.) that logistic 
regression did not include. The well-established risk factors 
for mortality of ABCBSI, such as creatinine, albumin, 
APACHE II score, and lactate have been used as prognostic 
markers in several studies (Du et al., 2019; Russo et al., 2019) 
but other factors, such as APTT and platelets, are less used 
as predictors of outcome in ABCBSI. Therefore, the SHAP 
values were used to further illustrate whether each feature 
contributed positively or negatively to the target outcome.

The SOFA and APACHE II scores are the most commonly 
used methods and authoritative critical illness evaluation 
systems in ICU. According to a retrospective cohort study of 
ICU patients with suspected infections, defining sepsis by an 
increase in SOFA score provided more accurate prognoses 
(AUC, 0.753) than either SIRS criteria (AUC, 0.589) or qSOFA 
(AUC, 0.607; Raith et al., 2017). The APACHE II score classifies 
diseases based on the severity from 0 to 71, with higher scores 
representing more severe illnesses and greater mortality risks. 
The AUC of SOFA or APACHE II score is not high and is no 
more than 0.85, even though they have been proven useful 
prognostic biomarkers for critical illnesses (Tian et al., 2022). 
Many studies were analyzed using multivariable logistic 
regression methods, with the AUC ranging from 0.76 to 0.84 
(Tseng et al., 2020). Recent studies have shown that ML models 
tend to have better predictive power than standard scoring 
systems (Morgan et al., 2019; Zhang et al., 2020). In line with 

FIGURE 3

Partial SHAP dependence plot of the XGboost model. It shows how a single feature (the top 12 important variables) affects the output of the 
XGBoost predictive model. SHAP values for specific features exceed zero, representing an increased risk of death. APACHE II, Acute Physiology 
and Chronic Health Evaluation II; SOFA, Sequential Organ Failure Assessment; P/F, PaO2/FiO2; WBCs, white blood cells; APTT, activated partial 
thromboplastin time; BUN, blood urea nitrogen.

https://doi.org/10.3389/fmicb.2022.1037735
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xu et al. 10.3389/fmicb.2022.1037735

Frontiers in Microbiology 08 frontiersin.org

these findings, our study demonstrated that the performance of 
the ML model was superior to the APACHE II and SOFA scores, 
in contrast to a systematic review that showed that logistic 
regression for the clinical prediction model is not inferior to the 
ML model (Christodoulou et al., 2019).

Our study not only generated a more accurate predictive 
model and identified other unrecognized key risk factors but 
also made it “explainable.” Each component of the predictive 
model can be visualized and contributes differently to the final 
outcome. Our study benefits from using SHAP values to 
uncover the black box of the ML model, therefore, our 
predictive model can provide implications for patient 
management, even when applied to individual patients. 
Additionally, based on the SHAP dependence plot, we further 
demonstrated the quantitative relationship of this contribution 
(Figure 3). Among the 12 most important features, most had a 
critical threshold at which the predicted risk abruptly changed. 
For example, the platelets <50 × 109 L−1 or lactate >2.5 mmol L−1 
resulted in a significant increase in mortality risk. There were 
some unexpected situations, such as higher creatinine led to a 
higher risk of death, while higher BUN was protective. Although 
both serum creatinine and BUN can represent renal function, 
they are not completely consistent. Acute kidney injury (AKI) 
is defined by increased serum creatinine or decreased urine 
volume, which are significantly associated with mortality in 
sepsis (Peerapornratana et al., 2019), whereas the increase in 
BUN is not only affected by renal function, but also by stress-
nutrition status and bleeding-volume status. A study reported a 
U-shape relationship between the BUN/creatinine ratio and 
all-cause mortality in the general population (Shen et al., 2022). 
Therefore, some important features may be missed due to the 
nonlinear relationship between features and risks in logistic 
regression. ML is particularly useful for handling enormous 
numbers of predictors, sometimes remarkably, more predictors 
than observations, and combining them in nonlinear and highly 
interactive ways (Obermeyer and Emanuel, 2016). Thus, the 
study offers a “warning threshold” that despite the parameters 
being in the normal reference range, the risk still increases in 
this model, and thus caution is needed.

This study has several limitations. First, it is a single-center 
retrospective study, so information bias and temporal bias should 
not be neglected. Second, the model was constructed with only a 
small number of patients, therefore, it needs to be  externally 
validated in a multicenter study with a large sample size to 
determine its applicability. Third, in patients with other bacterial 
pathogens concomitantly isolated with ABC, it was not possible 
to judge whether the infection was caused by ABC or the 
concomitant pathogen(s), or both. Finally, this model was used on 
all patients admitted to the ICU but it needs to be tested on general 
wards as well and more external validation is required in 
the future.

Conclusion

In conclusion, an interpretable ML model with optimal 
performance was constructed to predict early mortality in 
ABCBSI. Twelve of the most important features with 
corresponding thresholds crucial for early mortality 
prediction were identified. Furthermore, clinicans should 
be aware of important features (such as creatinine, APACHE 
II score, SOFA score, PH, P/F ratio, etc) beyond their 
corresponding thresholds, even within the normal range. 
However, this study needs to be confirmed in clinical settings 
and externally.
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