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Purpose of review

The current review attempts to demonstrate the value of several forms of carbon dioxide (CO2) gaps in
resuscitation of the critically ill patient as monitor for the adequacy of the circulation, as target for fluid
resuscitation and also as predictor for outcome.

Recent findings

Fluid resuscitation is one of the key treatments in many intensive care patients. It remains a challenge in
daily practice as both a shortage and an overload in intravascular volume are potentially harmful. Many
different approaches have been developed for use as target of fluid resuscitation. CO2 gaps can be used
as surrogate for the adequacy of cardiac output (CO) and as marker for tissue perfusion and are therefore
a potential target for resuscitation. CO2 gaps are easily measured via point-of-care analysers. We shed
light on its potential use as nowadays it is not widely used in clinical practice despite its potential. Many
studies were conducted on partial CO2 pressure differences or CO2 content (cCO2) differences either
alone, or in combination with other markers for outcome or resuscitation adequacy. Furthermore, some
studies deal with CO2 gap to O2 gap ratios as target for goal-directed fluid therapy or as marker for
outcome.

Summary

CO2 gap is a sensitive marker of tissue hypoperfusion, with added value over traditional markers of tissue
hypoxia in situations in which an oxygen diffusion barrier exists such as in tissue oedema and impaired
microcirculation. Venous-to-arterial cCO2 or partial pressure gaps can be used to evaluate whether attempts
to increase CO should be made. Considering the potential of the several forms of CO2 measurements and
its ease of use via point-of-care analysers, it is recommendable to implement CO2 gaps in standard clinical
practice.
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INTRODUCTION

One of the principles in the critically ill patient is to
ensure adequate tissue perfusion of all organ sys-
tems. Critically ill patients are at greater risk for
organ hypoperfusion than healthy individuals as
they have a greater resting energy expenditure
and oxygen consumption (VO2) [1].

A key factor in resuscitation is detecting hypo-
volemia and treating it consequently. It is essential
to guide fluid therapy without creating significant
intravascular volume overload. Several approaches
to resuscitation have been described to determine
outcome in the critically ill. Nevertheless, no con-
sensus is yet made on which approach could be seen
as best indicator of the adequacy of the resuscita-
tion. The described approaches include measuring
the venous-to-arterial carbon dioxide partial pres-
sure difference (pv–aCO2) or calculating the venous-
to-arterial carbon dioxide content difference. These
ht © 2018 Wolters Kluwe

rs Kluwer Health, Inc. All rights rese
approaches are known as carbon dioxide (CO2)
gaps. This review aims to demonstrate the value
of CO2 gap measurements in daily practice as they
can be obtained with point-of-care analysers in
a considerable proportion of the intensive care
population.
r Health, Inc. All rights reserved.
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KEY POINTS

� Venous-to-arterial cCO2 or partial pressure gaps are
markers for the adequacy of CO.

� A normal CO2 gap indicates that CO is high enough
to wash out CO2 from peripheral tissue and therefore
could be used for further understanding the clinical
state of critically ill patients.

� Either partial CO2 pressure gap or the CO2 gap to
arterio-venous O2 content difference ratio could be
used to guide resuscitation therapy.

� All needed variables are easily measurable in daily
practice via point-of-care blood gas analysers.

Table 2. Calculations

caO2¼ (1.34�SaO2�Hb)þ (0.003�paO2)

cvO2¼ (1.34�SvO2�Hb)þ (0.003�pvO2)

ca–vO2¼ caO2� cvO2

Plasma cCO2¼2.226�S�plasma pCO2� (1þ10pH�pK0)

S¼0.0307þ [0.00057� (37� T)]þ [0.00002� (37� T)2]

pK0 ¼6.086þ0.042� (7.4�pH)þ (38� T)� [0.00472
þ0.00139� (7.4�pH)]

Blood cCO2¼plasma cCO2� [1�0.0289�Hb/(3.352
�0.456� sO2)� (8.142�pH)]

pv–aCO2¼pvCO2�paCO2

DO2¼10�CO� caO2

VO2¼10�CO� ca–vO2

VCO2¼10�CO� cv–aCO2

O2ER¼ (caO2� cvO2)/caO2

ca–vO2, arteriovenous oxygen content difference; cCO2, carbon dioxide
content; CO, cardiac output; DO2, oxygen delivery; Hb, haemoglobin; O2ER,
oxygen extraction rate; pCO2, partial carbon dioxide pressure; pv–aCO2,
arterial-to-venous carbon dioxide partial pressure difference; SO2, saturation;
VCO2, carbon dioxide production; VO2, oxygen consumption.

Cardiopulmonary monitoring
BASIC PRINCIPLES OF CARBON DIOXIDE
GAPS

In the following section, we will describe the basics
of CO2 differences in venous and arterial blood
(Tables 1 and 2).

Physiological basics

VO2 is the difference between arterial and mixed
venous oxygen content (cO2) multiplied by the
cardiac output (CO). Carbon dioxide production
(VCO2) is the difference between mixed venous
and arterial CO2 content multiplied by the CO.
When rearranging the formulas of VO2 and VCO2,
CO can be defined as VCO2 divided by pv–aCO2.
Assuming that the VCO2 is constant and that the
changes in CO2 pressure and content are linearly
related, CO would be inversely related to the CO2

gap. This is basically a modification of the Fick
principle [2,3]. The corresponding formulas can also
be found in Table 2. These theoretical findings were
 Copyright © 2018 Wolters Kluwer 

Table 1. Abbreviations

VO2: oxygen consumption

VCO2: carbon dioxide production

pCO2: partial carbon dioxide pressure

pCO2 gap: difference of partial pressures of CO2 in venous and
arterial blood gas samples

cCO2: carbon dioxide content

cCO2 gap: difference of the CO2 contents in venous and arterial
blood gas samples

cO2: oxygen content

cO2 gap: difference of the O2 contents in arterial and venous
blood gas samples

CO: cardiac output

CI: cardiac index

DO2: oxygen delivery

SOFA: sequential organ failure assessment
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validated in the clinical setting [4,5]. Under normal
conditions, partial carbon dioxide pressure (pCO2)
gap ranges from 2 to 5 mmHg (0.3–0.7 kPa).

As CO2 is approximately 20 times more soluble
in blood plasma than oxygen [6], the diffusion
from ischemic tissue into the venous effluent of
CO2 is much higher than that of oxygen in states
of (relative) tissue hypoperfusion. Thus, the CO2

gap can be used as a sensitive marker for occult
tissue hypoperfusion [7]. Even in situations in
which an oxygen diffusion barrier exists (e.g.
occluded blood flow or oedema) which leads to
a decreased oxygen extraction ratio and an
increased oxygen debt, the problem is ‘unveiled’
due to the higher solubility of CO2 and therefore
an increased pv–aCO2 [8

&&

]. So, the CO2 gap can be
seen as marker of the adequacy of blood flow to
remove CO2 from the tissues rather than a marker
of the adequacy of tissue oxygenation.
Haldane effect

Another particular relevant phenomenon in the
context of CO2 differences is related to the binding
of CO2 to haemoglobin (Hb), also known as the
Haldane effect. It describes the binding capacity
of CO2 to Hb in relation to the bound oxygen
and its release to the tissues. To appreciate its impli-
cations, it is necessary to understand the concept of
CO2 content (cCO2), that is the sum of chemically
bound and the physically dissolved CO2 amounts in
the blood. However, to calculate the cCO2, the
rather sophisticated Douglas formula is needed
[9]. Looking at the curvilinear graph (Fig. 1), we
Health, Inc. All rights reserved.
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FIGURE 1. Carbon dioxide dissociation curve. Reproduced
with permission [10&&].

Understanding the carbon dioxide gaps Scheeren et al.
can conclude that ina state of loweroxygen saturation
(e.g. in venous blood, especially at high VO2 or low
flow), the CO2 concentration is much higher than in
well saturated blood (i.e. arterial blood) [10

&&

,11
&&

].
This implies that we should consider using cv–aCO2

instead of the commonly used pv–aCO2, particularly
during severe hypoxemia or acidosis. Nevertheless,
as mentioned above, this would mean elaborate
calculations to conceive the clinical state. Therefore,
even though it is slightly inferior to the cv–aCO2, the
pv–aCO2 often is used in daily practice.

In addition, one should keep the effect of hyper-
oxia in mind which leads to an increase in unbound
CO2 – the pCO2 – and therefore to an increase in the
pv–aCO2 [12].
CLINICAL RELEVANCE OF CARBON
DIOXIDE GAPS

In times of steadily increasing complexity of surgery
and intensive care therapy, it is mandatory to develop
strategies to adequately manage these situations.
Herein we need tools to identify those patients at
risk but also to effectively guide therapy. The follow-
ing section summarizes the recent findings on the
‘classic’ CO2 gaps as well as its modifications such as
the sublingual-to-arterial CO2 partial pressure differ-
ence. All of the studies included in the following can
also be found in an overview table (Table 3).
Basic findings in ICU patients

Studies in critically ill patients showed an arithmetic
correlation between cardiac index (CI) and the
mixed venous-to-arterial CO2 (pmv–aCO2) gap as
mentioned above [2,3].
 Copyright © 2018 Wolters Kluwe
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Traditionally, when talking about the pv–aCO2,
the pmv–aCO2 is meant. However, its calculation
requires a pulmonary artery catheter (PAC) to collect
mixed venous blood samples. As the use of the PAC
is decreasing over the last years, the gold standard
CO2 gap cannot be monitored in the majority of the
intensive care populations nowadays. When consid-
ering the risks, it is not reasonable to insert a PAC
only for this reason. Is it therefore an option to use
central venous blood instead of mixed venous blood
for calculating CO2 gaps?

A study in 83 unselected intensive care patients
showed that the pv–aCO2 and CI (measured by ther-
modilution via a PAC and transformed to natural
logarithmic values) correlated negatively linearly for
both mixed venous (R2¼0.903, P<0.0001) and cen-
tral venous (R2¼0.892, P<0.0001) to arterial pCO2

gap [13]. In accordance with that, mixed and central
venous pCO2 gaps were closely correlated [rs¼0.54,
95% confidence interval (CI) 0.43–0.63, P<0.01] in
septic patients, and therefore, for the daily clinical
routine, both can be used interchangeably to calculate
the CO2 gap [14]. As most ICU patients are equipped
with a central venous catheter rather than a PAC,
measuring pcv–aCO2 seems the best compromise.
Use of carbon dioxide gaps and outcome in
patients with septic shock

The relation of CO2 gaps and outcome was studied
in several trials in critically ill patients; CO2 gaps
were used either as single variable or in combination
with or in the context of other clinical variables.
Septic shock represents a major group of the ICU
patient population, so that many of the studies were
conducted in those patients.

When prospectively and observationally classify-
ing septic patients in four groups based on a prede-
fined pcv–aCO2 (higher or lower than 6 mmHg) before
the start of resuscitation and after 6 h, it was found
that patients who were in the persistently high CO2

gap group (>6 mmHg before start and after 6 h) had a
significantly higher 28-day mortality and also a sig-
nificantly higher Sequential Organ Failure Assess-
ment score at day 3 [15]. A post-hoc analysis of
earlier data of 53 patients with severe sepsis or septic
shock demonstrated an increased in-hospital mortal-
ity in persistently high pcv–aCO2 of 0.8 kPa (about
6 mmHg; odds ratio 5.3, 95% CI 0.9–30.7, P¼0.08) at
24 h after the start of treatment [14].

In a retrospective analysis in 172 septic shock
patients, it was found that the combination of cen-
tral venous oxygen saturation (ScvO2), which classi-
cally is used as a variable for estimating the adequacy
of resuscitation, along with the pcv–aCO2 (lower or
higher than 6 mmHg) showed a better predictive
r Health, Inc. All rights reserved.
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value for 28-day mortality (16.1 vs. 56.1%,
P¼0.001) than ScvO2 (lower or higher than 70%)
alone (50.0 vs. 29.5%, P¼0.009) [16].

In addition, a moderate correlation of the CO2

gap with lactate levels, which are commonly related
to adverse outcome, was found after 6 h of treatment
(r¼0.42, P<0.0001) but not at the start of the
treatment (r¼0.13, P¼0.25) in 80 patients with
septic shock [4]. In patients with septic shock,
a significantly higher pmv–aCO2 was found in
nonsurvivors than in survivors (5.9�3.4 vs.
4.4�2.3 mmHg; P<0.05). However, its prognostic
value was found to be only modest [17].
Other forms of carbon dioxide gradients in
the ICU

In addition to the commonly used pcv–aCO2 or the
pmv–aCO2, many forms of CO2 partial pressure dif-
ferences (ear lobe, gastric mucosa and sublingual to
arterial) have been studied with a spectrum of
different objectives.

Cutaneous-to-arterial pCO2 gap measured by an
ear lobe device was found to be significantly higher
at baseline in septic shock patients compared with
stable ventilated patients in the ICU (14.8�12.6 vs.
6�2.7 mmHg, P<0.0001). In addition, using a
post-hoc analysis a cut-off level of 9 mmHg was
identified to distinguish the septic shock group from
the nonseptic (control) group. Herein a high sensi-
tivity and a high specificity were found [86 and 93%,
respectively, area under the receiver operating char-
acteristic (ROC) curve of 0.94, 95% CI 0.85–0.98].

Furthermore, it was demonstrated that in 28-day
survivors of the septic shock patients, the cutane-
ous-to-arterial pCO2 gap decreased over the time
until the end of the observations at 36 h
(14.8�12.6 to 9.8�5.2 mmHg, P<0.01) [18].

Also, when comparing gastric mucosal-to-arterial
pCO2 gap obtained via tonometry in ventilated
patients on the ICU at admission, no significant
difference was found in the 28-day survivors and
nonsurvivors. However, when comparing the pCO2

gap after 24 h of admission, it was found to have
stabilized in survivors, whereas it had further
increased in nonsurvivors. Of note, patients who
had an increased gastric CO2 of more than 20 mmHg
after 24 h showed a mortality of more than 60% [19].

Further, it was demonstrated that sublingual and
gastric mucosal pCO2 correlated well (r2¼0.61,
P<0.05) in mechanically ventilated ICU patients
[20]. In the same study, dobutamine decreased the
sublingual-to-arterialpCO2gap,whichwasinterpreted
as improvement of the sublingual microcirculation.
Another study on the sublingual CO2 partial pressure
(pslCO2) in an unselected ICU group demonstrated
 Copyright © 2018 Wolters Kluwer 
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that both the pslCO2 and the psl–aCO2 had a better
predictive value for hospital mortality than classic
variables such as lactate or mixed venous saturation
at baseline (3.4�2.8 vs. 5.0�5.3 mmol/l, P¼0.21 and
73�10 vs. 69�12%, P¼0.17, respectively) [21].
Althoughall theseresultsderivefromresearchsettings,
theycouldbe seenas first step touseaCO2 gaptoguide
resuscitation therapy in daily practice.
Use of carbon dioxide gaps in patients
undergoing surgery

Comparable studies to those on the ICU were con-
ducted in patients undergoing anaesthesia. In 51
patients who were scheduled for craniotomy in the
sitting position, the relations of the pmv–aCO2,
pcv–aCO2 and CI were inversely proportional in those
who were worked up effectively beforehand and who
were ranging at normal CI levels during surgery (R2¼
0.830 and 0.760, respectively, both P<0.001) [22].

In 115 patients who were undergoing high-risk
(noncardiac) surgery, it was found that in those 78
who developed postoperative complications a signif-
icantly higher pcv–aCO2 was found at the time of ICU
admission (8.7�2.8 vs. 5.1�2.6 mmHg, P¼0.001).
Of those patients with complications, 54 developed
organ failure. Herein post hoc an ideal cut-off value of
the pcv–aCO2 of 5.8 mmHg for increased risk of post-
operative complications was identified (area under
the ROC 0.86, 95% CI 0.77–0.95) [23].

Such findings however could not be repeated for
the postoperative period in 393 patients after cardiac
surgery. A pcv–aCO2 higher or lower than 6 mmHg at
admission on the ICU and 6h later were not predictive
for the development of major complications. Further-
more, no difference in mortality was found [24].
Use of carbon dioxide gap in goal-directed
fluid therapy

In the context of the findings mentioned above, it is
only logical that CO2 gap was used as target for
fluid resuscitation.

In a prospective, observational study of 80 septic
shock patients a high baseline pCO2 gap was associ-
ated with a lower CI (2.9 vs. 3.9 l/min/m2) and a lower
ScvO2 (61 vs. 73%). Patients who reached a normal
pcv–aCO2 of less than 0.8 kPa (about 6 mmHg) after
6 h of resuscitation had decreased lactate levels
(median [interquartile range]: 2.0 [1.2, 3.5] vs. 3.6
[2.1, 8.4] mmol/l, P¼0.002) and a decreased O2

extraction rate (24% [21, 28] vs. 31% [26,41],
P<0.0001) in comparison with patients with a
higher pcv–aCO2. At the same time CI, oxygen deliv-
ery (DO2) and ScvO2 had increased in the patients
with a normalized pcv–aCO2. So, for monitoring of
Health, Inc. All rights reserved.
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fluid resuscitation the pcv–aCO2 could be a useful tool
to assess the adequacy of tissue perfusion [4].

In a retrospective analysis of complication rates
after major abdominal surgery in 70 patients treated
with a goal-directed fluid therapy algorithm, the
value of pcv–aCO2 was demonstrated particularly in
patients with a normal intraoperative ScvO2 of at least
71%; a high pcv–aCO2 could predict the development
of postoperative complications (area under the ROC
0.785, 95% CI 0.74–0.83) with a discriminating cut-
off pcv–aCO2 value of 5 mmHg. It was concluded that
pcv–aCO2 can serve as complementary target to ScvO2

to identify inadequacy of fluid therapy [25].
In 50 septic shock patients with a normal or

normalized ScvO2 after early resuscitation at the
emergency department, it was also demonstrated
that those with a persistently high pcv–aCO2 of more
than 6 mmHg remained inadequately resuscitated as
indicated by CI (2.7�0.8 vs. 4.3�1.6 l/min/m2,
P<0.0001). Furthermore, pcv–aCO2 and CI were
inversely correlated over time in these patients [26].

Based on all these findings, flow diagrams for a
structured approach of management of shock have
been developed. They put CO2 gap in a central posi-
tion, especially when ScvO2 is within the normal range
due to alteration of oxygen extraction capacities (e.g.
 Copyright © 2018 Wolters Kluwe

FIGURE 2. Flow-chart for analysing variables in tissue hypoxia
gap, difference of partial pressures of CO2 in venous and arteria
SaO2, arterial oxygen saturation; ScvO2, central venous oxygen

1070-5295 Copyright � 2018 Wolters Kluwer Health, Inc. All rights rese
in case of sepsis) and thus, where interpretation of
ScvO2 is uncertain. One of these flow diagrams is
presented in Fig. 2 [8

&&

]. Other flow diagrams empha-
size on the combination of lactate, ScvO2 and pv–aCO2

to help identify macrocirculatory and microcircula-
tory alterations (Fig. 3) [27

&

]. Indeed, some authors
have suggested thatan increased pv–aCO2 could reflect
microcirculation alterations not detected by other
systemic haemodynamic variables [28

&&

]. It could be
postulatedthat inpoorlyperfusedareas, accumulation
of CO2 lead to increased venous pCO2 due to the high
diffusion of CO2 through the tissues. Obviously, the
hypothesis that increasedpv–aCO2 reflects microcircu-
latory alterations rather than inadequate systemic
blood flow remains to be confirmed but is not in
contradiction with the general belief that in cases of
increased CO2 gap, therapeutic elevation of CO should
be first considered with the goal of improving tissue
oxygenation [29].
Use of the ratio of carbon dioxide gap to
arteriovenous oxygen content difference in
goal-directed fluid therapy

The use of the ratio of CO2 gaps (pv–aCO2 or cv–aCO2)
and the arteriovenous oxygen content difference
r Health, Inc. All rights reserved.

according to Vallet et al. [8&&]. CI, cardiac index; cvaCO2

l blood; Hb, hemoglobin; PPV, pulse pressure variation;
saturation; SVV, stroke volume variation.
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FIGURE 3. Integration of lactate, central venous oxygen saturation (ScvO2) and arterial-to-venous carbon dioxide partial
pressure difference (PvaCO2) to identify alterations of the (micro)circulation according to De Backer. CO, cardioac output; NI,
normal. Reproduced with permission [27&].

Cardiopulmonary monitoring
(ca–vO2) is a further step toward successful goal-
directed fluid resuscitation. In tissue hypoxia aerobic
VCO2 is markedly decreased, whereas there is only a
slight increase in anaerobic VCO2. Simultaneously
there is a significantly decreased VO2, which exceeds
thenetdecrease inVCO2.AsVCO2 is theproductof the
cCO2andCOandVO2istheproductofthecO2andCO,
CO can be eliminated from the formula. This relation
can also be expressed as the pv–aCO2 over the ca–vO2

ratio [28
&&

,30
&&

].
When post-hoc studying the pmv–aCO2 to ca–vO2

ratio in89critically illpatients, itwas foundthata ratio
of 1.4mmHg/ml was the optimal cut-off point to
predict hyperlactatemia (higher or lower than
2mmol/l) (area under ROC 0.85, 95% CI 0.79–0.91)
[31]. At baseline, the pmv–aCO2/ca–vO2 ratio was sig-
nificantlyhigher inthehighlactategroup(2.0�0.9vs.
1.1�0.6mmol/l), and there was a significant correla-
tion between those two variables (r¼0.57) [31]. The
same pcv–aCO2/ca–vO2 cut-off level of 1.4mmHg/ml
was foundposthoc in35septic shockpatientstopredict
an improved lactate clearance (decreaseof�10%)after
24 h of resuscitation (area under the ROC 0.82, 95% CI
0.73–0.92) [32]. Also in this study, a significant corre-
lation between lactate levels and pcv–aCO2/ca–vO2 was
found (r¼0.73) [32]. Thus, both studies found that
either central or mixed venous pv–aCO2/ca–vO2 was a
reliable marker for anaerobic metabolism. Further-
more, in patients who were admitted to an ICU after
cardiac surgery, pcv–aCO2/ca–vO2 was discriminating
for more than 10% increase in VO2 as respond to fluid
therapywithapost-hoccut-off valueof1.6mmHg/ml.
It could therefore serve as marker for global anaerobic
 Copyright © 2018 Wolters Kluwer 
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metabolism and as predictor for the response to a DO2

challenge. Accordingly, it was successfully used as
target in fluid resuscitation therapy (area under ROC
0.77�0.10, P¼0.032) [33].
CONCLUSION

In our review, we give an outline over the use of
several CO2 gaps for the haemodynamic assessment
and the guidance of haemodynamic therapy in
critically ill patients. All the components for the
used formulas are in a gaining proportion measur-
able with point-of-care analysers. Those are increas-
ingly available at bedside in the ICU.

DuetotheFickprinciple, itseemsfeasibletousethe
pv–aCO2asamarkeroftheadequacyofCO totheglobal
metabolic conditions [2,3]. Those theoretical findings
havealsobeenvalidatedforcriticallyillpatients[4]and
for patients who are undergoing surgery [5,22].

Because of the higher solubility of CO2 than that
of O2 in blood, the CO2 effluent of hypoxic tissue is
accordingly higher than that of O2 in states of low
flow. The pv–aCO2 can thus be used as a marker of
tissue hypoperfusion rather than a tool to detect
tissue hypoxia [6,7,8

&&

]. In theory, mixed venous
blood samples obtained through a PAC are necessary
for the gradient calculations. However, clinical stud-
ies [13,14] have shown that it is reasonable to use
central venous blood samples in most patients not
equipped with a PAC.

The CO2 gaps are suggested to be used to
guide resuscitation of shock states, especially when
alteration of oxygen extraction prevents perfect
Health, Inc. All rights reserved.
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interpretation of ScvO2 [4,25,26]. Studies in critically
ill patients further demonstrated that the pcv–aCO2/
ca–vO2 ratio was closely correlated to lactate levels
and lactate clearance, which are both classical
markers of tissue hypoxia and often used as targets
in goal-directed therapy algorithms [31,32].

Because of the ease of use and the range of
possibilities of CO2 gaps, it is recommendable to
implement the use of CO2 gaps and maybe also its
ratio to ca–cvO2 in daily ICU practice.
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