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Abstract 

Background:  Early antibiotic therapy for patients with severe infections is essential to improve outcomes. Conversely, 
use of overly broad antibiotic therapy for susceptible pathogens or unnecessary antibiotics in patients without bacte‑
rial infections is associated with adverse life-threatening events and superinfections. Antibiotics-induced changes 
in the human microbiota alter both immune and metabolic systems. Uncontrolled antibiotic use encourages emer‑
gence of antibiotic-resistant organisms. Around 50% of ICU patients receiving antibiotic therapy do not have con‑
firmed infections, whilst de-escalation and shortened treatment duration are infrequently performed. Mortality from 
serious infections remains high, highlighting the need for treatment optimisation.

Methods:  Narrative review.

Objectives:  To summarise the available evidence, emerging options, and unresolved controversies in optimising 
antibiotic therapy in severe infections.

Results:  Local epidemiology, underlying illnesses, accessibility to health care systems, and diagnostic and therapeu‑
tic resources are important factors to consider. Rapid diagnostic tests combined with individualised decision-making 
improve the selection of antibiotic therapy. Rapid de-escalation to narrow-spectrum monotherapy and shortening 
of the duration of therapy should be the rule. Uncertainty still persists regarding the personalisation of therapy for 
difficult-to-treat resistant bacteria. Pharmacokinetic (PK) optimisation and prolonged or continuous beta-lactam use 
is safe and may improve outcomes. Therapeutic drug monitoring (TDM) should be used, especially when altered vol‑
ume of distribution and/or drug clearance is suspected or where toxicity is likely. The impact of TDM combined with 
prompt dose adjustment is encouraged. Emerging technologies including rapid broad diagnostic tests and electronic 
antibiotic optimisation tools will further support collaboration between pharmacists, microbiologists, infectious dis‑
eases specialists, and intensivists for optimising antibiotic therapy and stewarding these precious resources.

Keywords:  Sepsis, Antibiotics, Rapid diagnostic tests, Antibiotic stewardship, Pharmacokinetics, Critically ill

Introduction
Each year, 48.9 million individuals are affected by sep-
sis, resulting in 11 million related deaths globally [1]. 
Hospital mortality from severe infections remains high, 
with community-acquired pneumonia (CAP) exhibit-
ing mortality rates of 20–30%. Hospital-acquired infec-
tions, such as hospital-acquired pneumonia (HAP), 
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ventilator-associated pneumonia (VAP), or hospital-
acquired bloodstream infection (HABSI), have mortal-
ity ranging between 20 and 50% [2–4]. Since bacterial 
pathogens account for over 70% of serious infections 
and sepsis, optimising antibiotic therapy is essential for 
improving outcomes [5, 6]. However, the need for early 
antibiotic administration must be carefully balanced 
against the risks of overuse, which contributes to the 
growing threat of antimicrobial resistance (AMR) [7]. 
Rapid pathogen detection can guide the initiation, selec-
tion, and duration of antibiotics, and multidisciplinary 
collaboration involving clinicians, microbiologists, and 
pharmacists is beneficial. In this narrative review, we pro-
vide a comprehensive overview of the epidemiology of 
severe infections, clinical contexts, diagnostics, therapeu-
tic strategies, and approaches to optimise antibiotic use 
in critically ill patients.

Epidemiology of severe infections
Community vs hospital‑acquired
Classifying infections based on acquisition site—com-
munity-acquired (CAI), hospital-acquired (HAI), or 

ICU-acquired (ICU-AI)—is crucial for assessing the risk 
of AMR and selecting appropriate antimicrobial therapy. 
These groups also differ in infection source, microbial 
epidemiology [1]. Studies consistently report increas-
ing duration of hospital stay and mortality from CAI to 
ICU-AI [8–10], with ICU-AI frequently occurring in 
debilitated patients with multiple comorbidities, prior 
antibiotic exposure, and resistant pathogens [10].

CAIs typically involve respiratory, intra-abdominal, or 
urinary infections. In contrast, HAIs and ICU-AIs are 
often linked to medical interventions, including surgical 
site infections ventilatory-acquired pneumonia, intravas-
cular catheter-related infections, and intra-abdominal 
infections [2, 10, 11] with pathogens varying according to 
acquisition location, and source (Fig. 1).

Bacterial resistance is associated with 4.9 million 
deaths globally, with sub-Saharan Africa, South Asia, 
and Eastern Europe carrying the highest burden. 
AMR—including multidrug resistance (MDRO)—
increases progressively from CAI to ICU-AI, although 
patterns vary by region [4, 11]. AMR may delay the 
initiation of appropriate therapy which worsening 
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Fig. 1  Severe infection in immunocompetent individuals. UTI urinary tract infection; CAP community-acquired pneumonia; HCAP healthcare-asso‑
ciated pneumonia; HAP hospital-acquired pneumonia; VAP ventilatory-associated pneumonia; MDR multidrug-resistant bacteria; XDR extensively 
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outcomes [2]. Whilst current AMR data do not always 
distinguish CAI and HAI, community-acquired methi-
cillin-resistant Staphylococcus aureus (MRSA) appears 
to have plateaued [12] (see https://​data.​who.​int/​indic​
ators for details). Meanwhile, extended-spectrum beta-
lactamase-producing E. coli is increasing currently 
representing 42% of the BSIs recorded by WHO, and 
exceeding two-thirds of cases in the Middle East, Africa 
and Asia. For HAIs, carbapenem-resistance Enterobac-
terales (CRE) and A. baumannii (CRAB) are on the rise 
[13, 14], particularly metallo-betalactamases, (NDM) 
and OXA-48 producing strains some of which have 
spread into community settings.

Indeed, infections with AMR organisms in the commu-
nity are more common in the case of recent and frequent 
use of antibiotics, especially within the past 90  days, 
exposure to healthcare settings (recent hospitalisation, 
residence in nursing homes, or long-term-care facilities). 
Comorbidities, such as COPD, chronic renal failure, and 
diabetes, are other factors to consider. Finally, high-risk 
social environments, overcrowding or poor sanitation, 
and IV drug abuse are other notable factors of infections 
due to AMR organisms in the community.

Low‑ and‑middle‑income nations
Resource-poor settings bear a disproportionate sepsis 
burden, accounting for 85% of cases and deaths. Most 
sepsis cases in these regions are CAI, especially diarrheal 
illnesses in children under five years of age [1]. HCAIs are 
also prevalent, often secondary to non-communicable 
diseases [1] and maternal disorders [1, 15]. A microbio-
logical diagnosis is often lacking due to limited resources 
and access to microbiological tests. The incidence and 
mortality of sepsis are inversely related to socioeco-
nomic indicators like income and education [16]. Similar 
to high-resource settings, pyogenic bacterial pathogens 
dominate; however, leptospirosis, melioidosis, typhus, 
and tuberculosis are also prevalent. Additionally, severe 
forms of malaria, dengue, and other viral haemorrhagic 
fevers are common [17], as are coinfections with HIV 
[18] and tuberculosis [19].

Delays in seeking and accessing care—due to low 
health literacy, cultural beliefs, geography, financial bar-
riers, and insufficient infrastructure—contribute to poor 
outcomes [20–22].

Clinical management is further hampered by limited 
personnel, diagnostics, ICU capacity [18], and over-
crowded emergency departments (ED) [23] or general 
wards [24, 25]. Restricted access to microbiological test-
ing impairs diagnosis and hinders antimicrobial stew-
ardship (AMS), fostering antimicrobial inadequacy and 
resistance [26–28].

When to start and not to start antibiotics?
Antibiotics and source control are key pillars of the 
treatment of severe bacterial infections [29, 30]. Ideally, 
antibiotics should target confirmed bacterial infections 
guided by objective criteria (Fig.  2). However, diagnos-
ing infections, sepsis, and septic shock remains complex, 
despite diagnostic advancements [31], and uncertainty 
often leads to antibiotic overuse.

Current guidelines emphasise two decision-making 
factors: likelihood of infection and illness severity [29]. In 
patients with shock or high suspicion of bacterial infec-
tion, antibiotics should be administered immediately—
within the hour. In suspected sepsis without shock, a 3-h 
diagnostic window is preferred to reduce overtreatment.

Currently, there is no single biomarker that reliably 
distinguishes infection-related shock from other causes 
of shock and inflammation. Commonly used biomark-
ers, e.g., C-reactive protein (CRP) and procalcitonin 
(PCT), lack sufficient specificity and sensitivity to reliably 
guide antibiotic initiation [32]. A multifaceted approach, 
including patient history, clinical examination, laboratory 
findings, and utilising imaging studies should therefore 
be adopted in the diagnosis of infection [33, 34]. Micro-
biological tests can confirm the presence of bacterial 
pathogens, but must be appropriately interpreted to dif-
ferentiate colonisation from true infection. Rapid molec-
ular and microbiological techniques are transforming 
diagnostics (see later).

First, antibiotics should only be used for true bacte-
rial infections. In cases where source control (e.g., cath-
eter removal in the absence of positive blood culture) is 
complete, antibiotics may not always be necessary [35, 
36]. A watchful-waiting approach is appropriate when 
patients are stable and closely monitored allowing for 
precise diagnosis and more targeted therapy [37]. Mean-
while, close monitoring is needed to detect clinical dete-
rioration and start empirical therapy if microbiological 
documentation is pending. The results of before-after 
studies suggested that this conservative strategy may be 
beneficially applied for nosocomial infections including 
VAP [38, 39]. Antibiotic initiation must consider not only 
whether to treat, but also the appropriate agent and spec-
trum of treatment, factoring in illness severity and AMR 
risk [40, 41].

Ultimately, the decision to start or withhold antibiotics 
requires careful balancing of risks and benefits, ensur-
ing that treatment is both timely and appropriate whilst 
avoiding unnecessary antimicrobial use.

Specific issues
Migrants/travellers, emerging infectious diseases
The globalisation of travel and migration increases the 
risk of emerging infectious diseases (EIDs). Table 1 lists 

https://data.who.int/indicators
https://data.who.int/indicators
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common EIDs. Travellers and migrants may be exposed 
to pathogens uncommon in their destination countries. 
A retrospective study of 14,554 ICU admissions in France 

showed that undocumented migrants were younger, 
and more likely to have infections, shock, or respiratory 
failure, though with similar mortality to general ICU 

Fig. 2  When to start and when not to start antibiotic treatment in ICU patients. Created in BioRender. De Bus, L. (2025) https://​BioRe​nder.​com/​
s05x4​56

Table 1  Emerging and re re-emerging Infectious Diseases leading to ICU admission in Travelers and Migrants [45, 48, 49]

NB: according to symptoms many other diseases should be considered but are rare. Ebola, Lassa, Crimean-Congo HF, Yellow Fever: may present with haemorrhagic 
shock. Bacterial meningitis is common. Japanese Encephalitis, West Nile virus, Oropouche virus are common causes of severe neurologic disease seen in travelers

Disease Area of acquisition Transmission Clinical picture Potential for ICU admission

Malaria (Plasmo‑
dium falciparum 
more likely)

Sub-Saharan Africa, Asia Mosquito bite Anopheles Fever, chills, anaemia, organ 
failure

High

Enteric fever India and South-east Asia Consumption of contaminated 
food or water containing Sal-
monella typhi or S. paratyphi 
species

Fever, chills, bradycardia, rash. 
Shock and sepsis. Encepha‑
lopathy, intestinal perforation

Moderate to high

Rickettsial diseases South Africa, Mediterranean, 
India, South America, Korea, 
Russia

Different vectors (lice, mites, 
or ticks)

The classical clinical trial of 
fever, rash, and eschar (“tache 
noire”) should raise suspicion. 
Myalgia, headache, cough

Moderate to high

Tuberculosis 
(including 
multidrug-resist‑
ant-TB)

Global Airborne Cough, fever, weight loss, 
respiratory failure, central 
nervous system disease

Moderate

Leptospirosis Endemic in tropical/subtropical 
regions: South & Southeast 
Asia, Central/South America, 
Caribbean, parts of Africa

Skin/mucosal contact with 
water or soil contaminated 
by urine of infected animals 
(especially rodents)

Sepsis like shock, intra-alveolar 
haemorrhage, tubulointer‑
stitial nephritis. Myocarditis, 
Jaundice also common

Moderate to high

Dengue fever South and Central America, 
including the Caribbean, 
Southeast Asia, Kenya, and 
Tanzania

Mosquito bite Vary from mild fever, haemor‑
rhagic fever to dengue shock 
syndrome

Moderate to high

https://BioRender.com/s05x456
https://BioRender.com/s05x456
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patients [42]. Another study showed increased rates of 
ICU admission and ARDS in migrants [43], both studies 
showing that delayed access to primary care is a major 
driver of ICU admission.

Overcrowding, malnutrition, and limited healthcare 
access exposes migrant populations to gastrointesti-
nal and respiratory infections. Returning travellers with 
acute febrile illness are most commonly diagnosed with 
malaria, dengue, or rickettsial infections and may carry 
MDROs even years later [44, 45]. Notably, 2–4% of febrile 
travellers require ICU admission, primarily due to Plas-
modium falciparum infections [45, 46].

A comprehensive travel and exposure history, aware-
ness of incubation periods and regional prevalence, 
and referencing global maps of outbreaks (e.g., CDC 
(https://​www.​cdc.​gov/​outbr​eaks/​index.​html accessed 
01/04/2025) are essential for diagnosis. Empiric protocols 
include antimalarials (e.g., artesunate) and one or more 
antibacterial drugs (ceftriaxone + doxycycline/azithro-
mycin) [47]. Rapid pathogen testing and early infectious 
disease consultation are key, along with appropriate 
infection control precautions [48].

Immunocompromised patients
Immunosuppression encompasses solid organ cancers, 
haematological malignancies, autoimmune diseases, 

organ transplantation, and HIV/AIDS. In recent dec-
ades, the survival of immunocompromised patients has 
improved, leading to increased prevalence in the popu-
lation (2.7%–2013, 6.6% in 2021 in the U.S.) [50]. In the 
EPIC III cohort, 24% of the 15,202 ICU patients included 
were immunocompromised, 41% of whom were admitted 
for an infection [51]. Sepsis outcomes in immunosup-
pressed patients vary according to underlying condition: 
cancer patients face higher mortality due to intrinsic vul-
nerabilities [51], whereas solid organ transplant recipi-
ents tend to have lower mortality than non-transplant 
patients [52].

Immunocompromised individuals are vulnerable to a 
wide range of pathogens, including opportunistic organ-
isms. T-cell dysfunction and steroids predispose to fun-
gal/mycobacterial infections [53], whilst other deficits 
influence bacterial susceptibility (Fig.  3). Nevertheless, 
empirical antibiotic therapy must always cover classical 
bacteria in these patients. In CAP, Streptococcus pneumo-
niae, Klebsiella pneumoniae, and Haemophilus spp. are 
the most common [54], whilst non-classical CAP patho-
gens such as Pseudomonas aeruginosa should be con-
sidered only in those with risk factors such as COPD or 
prior colonisation.

Risk of MDROs is more closely tied to repeated hospi-
talisations or antibiotic exposure than immune status [54, 

Fig. 3  At risk pathogens according to the type of immunosuppression. CAR​ chimeric antigen receptor; EBV Epstein–Barr virus; HIV human immuno‑
deficiency virus; HSCT haematopoietic stem cell transplant; HSV herpes simplex virus; SOT solid organ transplant; VZV varicella zoster virus

https://www.cdc.gov/outbreaks/index.html
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55]. Empirical antibiotics selection should focus on illness 
severity and MDRO risk. Combination therapy may ben-
efit neutropenic patients and cases involving pathogens 
with reduced susceptibility [56]. Guidelines recommend 
an anti-pseudomonal beta-lactam with aminoglycosides 
for neutropenia and septic shock [51]. Immunocompro-
mised patients are often excluded from trials on antibi-
otic duration. Retrospective data suggest short and long 
treatments for P. aeruginosa BSI may be equally effective 
[57], but more evidence is needed.

Role of the microbiology laboratory and rapid 
diagnostic tests
The microbiology lab remains central in management of 
serious bacterial infections. Traditional culture methods 
are slow and labour-intensive. MALDI-TOF has revolu-
tionised workflows with faster and more accurate patho-
gen identification (see Fig. 4) [58].

Automated multiplex PCR platforms detect multiple 
pathogens and AMR genes [59]. Their clinical benefit—
especially mortality reduction—is best demonstrated 
when paired with AMS interventions. Banerjee et  al. 
showed improved treatment modification with multi-
plex PCR, particularly when integrated with AMS [60] 
They found that rapid testing had advantages in modify-
ing treatment, but was most effective when paired with 
AMS, a finding that has been replicated elsewhere [61]. 
Demonstrating clear mortality benefit has proved more 
elusive, with few studies powered only to detect modest 
effects. In high-prevalence settings, early carbapenemase 
detection improved outcomes in CRE BSI patients [62].

A meta-analysis of 25,682 bloodstream infection cases 
found rapid testing with AMS reduced mortality (OR 
0.72) and time to optimal therapy by 29 h [63]. Yet, stud-
ies like MULTICAP or INHALE WP3 on rapid PCR in 
CAP/HAP/VAP failed to show benefits in clinical cure 
benefits, despite faster appropriate therapy [64, 65]. Fur-
thermore, it underscores that the appropriateness of the 
initial empiric treatment is of unparalleled importance. 
The impact of this in countries where bacterial resistance 
is high remains unexplored [66].

More generally, whilst these tests offer greater sensitiv-
ity and specificity than traditional cultures, limitations 
persist, including predefined pathogen panels, detection 
of non-viable organisms, and high costs [67].

Platforms, such as BioFire and T2MR, are FDA-
approved, whilst others like clinical metagenomics are 
still under development. An additional key considera-
tion for any diagnostic is pre-test probability, especially 
for uncommon pathogens that may be included in multi-
plexed testing panels, where corroborating evidence may 
be required to secure the diagnosis. Equally, rapid test-
ing may need to specifically directed towards the likely 

infectious agents (or resistance pattern) relevant to the 
clinical setting. For instance, the BioFire FilmArray Men-
ingitis/Encephalitis Panel is very useful for community-
acquired central nervous system infections, but is much 
less appropriate for post-neurosurgical infections, where 
an entirely different array of organisms and resistance 
patterns predominate.

Initial antimicrobial selection
Whilst the emphasis often lies on timeliness of empirical 
antibiotic administration, initial appropriate antibiotic 
therapy (IAAT) is equally critical in determining patient 
outcomes. A study found that for every four patients 
with septic shock receiving IAAT, one life was saved—
especially in infections caused by MDR Gram-negative 
organisms [68]. In addition to reducing mortality, IAAT 
shortens hospital length of stay (LOS) by approximately 
2.5 days, contributing to substantial cost savings [69].

Despite the limitations of retrospective data, the con-
sistent association between IAAT and improved out-
comes underscores the need for structured strategies to 
ensure its delivery in severe bacterial infections [70]. This 
requires consideration of infection source, patient risk 
factors, and available antimicrobial options (Fig. 5).

Excessively broad-spectrum antibiotic use can be det-
rimental. In CAP, one-third of cases receive overly broad 
empiric therapy, which is linked to increased mortality, 
LOS, superinfections, and disruption of microbiota lead-
ing to AMR [71, 72]. Similarly, in ED presentations of 
sepsis with bloodstream infections, one-third of patients 
received unnecessarily broad MDRO coverage, result-
ing in worse outcomes, including higher mortality and 
increased C. difficile and acute kidney injury rates [73].

Given the empirical nature of initial therapy in severe 
infections, clinicians must balance early, adequate cover-
age against the risks of overuse. Rapid pathogen diagnos-
tics enable early de-escalation and careful stewardship of 
newer agents active against MDR organisms are crucial. 
Proposed empiric regimens tailored to resistance risks 
are summarised in Table E1.

Monotherapy vs combination therapy
Combination therapy is commonly used in severe infec-
tions to enhance coverage and leverage potential synergy 
between agents. Guidelines often recommend empiric 
combination regimens with subsequent de-escalation 
once susceptibilities are known (Fig.  6). Evidence on 
de-escalation is mixed. In a small RCT by Leone et  al., 
patients randomised to de-escalation had higher rates 
of superinfections and longer antibiotic courses, though 
mortality was unchanged [74]. In contrast, Lopez-Cor-
tes et  al. found that de-escalation from broad-spectrum 
beta-lactams to narrower agents in Enterobacterales BSI 
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resulted in non-inferior outcomes compared to contin-
ued broad-spectrum therapy [75].

The most recent guidance from the Infectious Dis-
eases Society of America [76] advocates combination 
therapy for definitive therapy of serious infections 
due to Acinetobacter baumannii or Stenotrophomonas 

maltophilia, but not CRE or Pseudomonas aerugi-
nosa. Two randomised-controlled trials have explicitly 
addressed this issue by comparing colistin monotherapy 
with colistin combined with a carbapenem for patients 
with infection due to CRE. Neither showed a significant 
reduction in mortality using combination therapy [77, 
78].

Fig. 4   Existing, new and emerging methods for microbiological diagnosis. Note some methods can be applied in a culture-dependent or culture-
independent approach (e.g., BioFire instrument can be used to test cerebrospinal fluid directly [FilmArray ME Panel] or on positive blood culture 
bottles [BCID2 Panel]). Some novel methods are FDA-approved (e.g., AcceleratePheno, T2MR, and BioFire), others remain in clinical development 
(e.g. clinical metagenomics)
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Role of the clinical pharmacist
PK/PD principles
Beyond selecting appropriate antimicrobials, achiev-
ing optimal and timely pharmacokinetic/pharmacody-
namic (PK/PD) target attainment significantly improves 
clinical and microbiological outcomes in critically ill 
patients [79].

PK describes the effect that the body has on the 
drug—through absorption, distribution, metabolism, 
and elimination. Important PK parameters are shown 
in Fig. 7.

PD describes the effect that the drug has on the body. 
For antibiotics, PD relates the antibiotic concentration to 
its ability to kill or inhibit the growth of a pathogen. This 
is often expressed in terms of concentration relative to 
the minimum inhibitory concentration (MIC). Unbound 
drug concentrations   (i.e., free concentrations) are most 
relevant for efficacy, and protein binding can limit drug 
action [80]. Numerous studies have demonstrated that 
different antibiotics have different PD properties and 
can be categorised into three categories that, by and 
large reflect their modes of bacterial killing [79, 81]; the 

Fig. 5  Selecting appropriate antibiotic therapy: key steps and considerations

EEmmppiirriiccaall tthheerraappyyEEmmppiirriiccaall tthheerraappyy DDooccuummeenntteedd tthheerraappyy
(identification and susceptibility)

DDooccuummeenntteedd tthheerraappyy
(identification and susceptibility)

IInnccrreeaassee tthhee rraattee ooff hhaavviinngg aatt lleeaasstt

oonnee mmoolleeccuullee aaccttiivvee �� NA

Improve bacterial clearance by synergistic effect ((??)) experimental data only, endocarditis

Improve tissue diffusion ((??)) uncertain

Decrease toxicities by decreasing doses No

Prevent emergence of bacterial resistance No (except tuberculosis)

IImmpprroovvee ppaattiieenntt’’ss oouuttccoommee ((??))
(No for susceptible bacteria, uncertain for highly resistant bacterias))

PPootteennttiiaall aarrgguummeennttss ffoorr ccoommbbiinnaattiioonn tthheerraappyy

Fig. 6  The pro and con of combination therapy in severe bacterial infections: NA not available
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duration of time that free drug concentration remains 
above the MIC during a dosing interval (fT > MIC; time 
dependency), the ratio of AUC0–24 to MIC (total expo-
sure/time), and the ratio of Cmax to MIC (concentration 
dependency) (Fig. 7). Achieving the appropriate target for 
each antibiotic class is key to maximising efficacy whilst 
minimising toxicity.

Figure  7 suggests proposed optimal antibiotic expo-
sures in an attempt to improve outcomes. Clearance 
of the drug and the volume of distribution are the most 
dynamic parameters and their surrogates in terms of 
organ function (kidney, liver) must be closely monitored 
and interpreted.

Underdosing may occur when clearance of a drug 
is higher than expected. When renal function is not 
impaired in the hyperdynamic circulation of sepsis, 
renal clearance of drugs is often higher than “normal”. 
This phenomenon called ‘augmented renal clearance’ 
(ARC) [82] can be expected in populations at risk includ-
ing (neuro)-trauma, burns, pancreatitis, pregnancy, and 
younger patients. Care is required in these patients to 
provide adequate dosing [82].

In view of their “time-dependent” kill characteristics, 
the pharmacokinetic properties of ß-lactams, the most 
frequently prescribed antibiotics in ICU, can be opti-
mised by modifying their application to a bolus followed 

immediately by a continuous infusion. A recent large 
RCT and meta-analysis together strongly identify clini-
cal outcome benefits [83, 84].  Whilst there are no large 
RCT’s on extended infusion of ß-lactams vs bolus dosing, 
such infusions are pharmacologically sound [85, 86].

Drug–drug interactions
Severe infections often require complex, multidrug regi-
mens that heighten the risk of toxicity and interactions. 
Clinical pharmacists play a key role in reviewing all 
medications to minimise these risks. Nephrotoxicity is a 
major concern with aminoglycosides, vancomycin, and 
polymyxins, especially when combined with diuretics or 
other nephrotoxins. Macrolides and triazoles can cause 
significant drug-concentration  fluctuations due to meta-
bolic interactions.

It follows that a full review of all medications is 
required as part of pharmacological management of 
severe infections. For both acute therapies related to 
critical illness (e.g., sedatives and anticonvulsants) but 
also long-term medications (e.g. antiretroviral treatment, 
antipsychotics, and antidepressants), careful review of 
ongoing dosing needs is required.

Pharmacists also manage interactions with long-term 
medications (e.g., antipsychotics, anticonvulsants, and 
antiretrovirals) and support dose adjustments during 

Fig. 7  Elements to consider to optimise antibiotic therapy (adapted from [81, 87]). Cmax: peak concentration; Cmin: though concentration; AUC 
area under the curve; MIC: minimum inhibitory concentration: is defined as the lowest concentration of a drug, which prevents visible in vitro 
growth of bacteria or fungi. MPC: mutation prevention concentration describes a drug concentration threshold or lowest drug concentration 
blocking growth of mutant bacterial sub-populations that spontaneously arise in bacterial densities of 107−109 cfu—densities seen with infection. 
NB: The clinical impact of other elements related to the interaction between antimicrobials and bacteria (bactericidal activity, inoculum effect, and 
post-antibiotic effect) are debated
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acute illness. Regular medication reviews by pharmacists 
reduce hospital stay [88] and may improve outcome [89].

Therapeutic drug monitoring: when and how
TDM is essential in optimising antibiotic therapy ensur-
ing efficacy whilst minimising toxicity. It is particularly 
important in high-risk scenarios such as: (1) severe 
infections, e.g., sepsis or septic shock, (2) use of narrow 
therapeutic index drugs (vancomycin, aminoglycosides, 
or antifungals like voriconazole), (3) altered PK such as 
ARC, impaired renal/hepatic function, or extracorporeal 
therapies (e.g., renal replacement therapy or extracorpor-
eal membrane oxygenation-ECMO), (4) situations with 
high interpatient PK variability risks, such as burn, obese 
patients, or those with fluctuating organ function, and (5) 
infections at complex sites (endocarditis, central nervous 
system, pulmonary, or bone joint infections) where drug 
penetration is critical.

Recent reviews have examined the role of β-lactam 
TDM in critically ill patients [90–92]. β-lactam TDM 
improved target attainment, and microbiological and 
clinical cure but failed to improve mortality and AMR 
[91, 92]. However, challenges, including robustness of 
TDM recommendations, intervention deviations, and 
confounding factors, may have influenced these results.

A recent multicentre RCT by Hagel et  al. (n = 249) 
found no significant difference in SOFA scores between 
TDM and control groups (p = 0.39), though TDM 
reduced underdosing and improved target concentration 
attainment [93].

Another crucial issue is the high PK variability of anti-
microbials even within the same patient throughout the 
ICU stay, particularly related to altering renal function, 
emphasising the need for individualised dosing strategies 
and dynamic reassessments.

High intra-patient PK variability—especially from 
changing renal function—supports the need for indi-
vidualised, dynamic dosing. Improving turnaround time 
and interpretation of TDM results that is crucial and 
improving result interpretation support are key priorities 
in enhancing their practical clinical application. Strate-
gies to support more accurate and effective TDM include 
use of nomograms and model-informed precision dosing 
(MIPD) [92, 94].

When antimicrobials are harmful
Antimicrobial-associated harm (Fig.  8) includes adverse 
drug events and microbiotoxicity [95]. Broader spectrum 
[38, 96, 97], longer duration [98–100], combination ther-
apy [101], and repeated courses increase the likelihood 
of side effects and superinfections. Each day of antimi-
crobial use raises the odds of adverse and severe adverse 
events by 4% and 9%, respectively [102].

Adverse drug events may be immune-mediated idi-
osyncratic reactions, potentially involving interactions 
with viral pathogens, or dose-dependent events [103]. 
Dose-dependent reactions result from PD interactions 
between antimicrobials and mammalian cells. Beta-lac-
tams are often used at higher-than-conventional dos-
ing regimens in critically ill patients and when used in 
patients without ARC, renal dysfunction increases the 
risk of neurotoxicity. This can present as confusion, hal-
lucinations, myoclonus, convulsions, and non-convul-
sive status epilepticus, in up to 10–15%, especially in 
the event of underlying brain abnormalities. Cefazolin, 
cefepime, and imipenem are more commonly implicated 
[104]. Cefepime neurotoxicity has been reported in 48% 
of overdosed and 26% of appropriately dosed patients 
[105]. Whilst rare, beta-lactam-induced nephrotoxicity 
may increase when combined with agents like vancomy-
cin, particularly piperacillin–tazobactam [106].

Antimicrobials disrupt commensal microbiota [107]. 
Following a course of antimicrobials, there is rapid 
reduction in the total numbers and diversity of health-
associated bacteria like Bifidobacterium, Lactobacillus, 
and Bacteroides species [108] and a bloom of potential 
pathogens, including Enterobacterales, Enterococcus, 
Clostridium, and Candida [109] and of the total burden 
of resistance genes (“resistome”) in the host’s gut [95, 
110–113]. This microbiotoxicity is especially marked 
during pregnancy, early life, elderly age, immunosuppres-
sion, and severe illness [95, 114] and with anti-anaerobic 
and biliary-excreted antibiotics [72, 115]. Dysbiosis may 
lead to localised disease at the colonisation site, such as 
Clostridioides difficile colitis [107], but it may also facili-
tate translocation of microorganisms to cause disease in 
a different site, namely BSIs [116–118]. Usually intestinal 
microbiota recover within 2–8  weeks following antibi-
otics [109, 111]; however, multiple species may remain 
undetectable even after 6 months [109]. Antibiotic-asso-
ciated dysbiosis of the upper respiratory tract may cause 
increased colonisation by various Enterobacterales and 
Streptococcus pyogenes, eventually causing respiratory 
infections [107].

Exposure to bactericidal antimicrobials results in mito-
chondrial toxicity that may contribute to development 
and perpetuation of organ dysfunction [103, 119] and to 
immunoparalysis in sepsis [120].

When to stop antibiotics/optimal duration 
of therapy
The ideal duration of antibiotic therapy remains 
debated. In-vitro antimicrobial exposure leads to eradi-
cation of bacteria within hours [121], whilst in clinical 
settings, pathogens are often eliminated only within 
3  days of therapy. Effective antibiotics led to rapid 
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reductions in organism detection by PCR in Acineto-
bacter baumannii bacteraemia [122]. Notably, patients 
with immunocompromising conditions, but not those 
with more severe illness, cleared A. baumannii slower, 
with an associated increase in mortality [122]. How-
ever, inflammation and organ failure may persist for 
some time after pathogen clearance [123], where con-
tinuing antibiotics risks harm with no benefit [103].

Three strategies guide therapy duration: fixed duration, 
clinical assessment, and biomarker-guided approaches 
[124]. Traditional fixed durations often follow 7- or 
14-day schedules, perhaps influenced by historical or cul-
tural norms [125, 126], although a preference for prime 
numbers (3, 5, 7) is also noted [127]). The common fea-
ture of almost all these trials is the non-inferiority, and 
frequent superiority, of short-duration antimicrobials 
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Fig. 8  Harmful effects of antimicrobial therapy. DRESS Drug rash with eosinophilia and systemic symptoms
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[127]. A note of caution however, many of these studies 
required clinical stability and source control as entry cri-
teria and thus may not be directly applicable to patients 
with severe infection. However, a shorter duration 
appears safe in hospital-acquired BSIs [128], VAP [129], 
and intra-abdominal infections [130, 131].

Whilst clinicians often rely on inflammatory markers 
and clinical stability, features of inflammation/infection 
can persist despite microbiological cure [132]. However, 
as noted, features of inflammation may persist beyond 
pathogen eradication and shorter fixed duration courses 
appear non-inferior to those guided by clinical features 
[131, 133].

The most widely tested biomarker is procalcitonin 
(PCT), whilst several studies have examined C-reactive 
protein (CRP). A large trial comparing PCT and CRP-
guided strategies found that PCT shortened therapy by 
1 day (from 8 to 7 days), whilst CRP guidance did not 
reduce duration and showed a potential mortality sig-
nal [134]. The reduction in antimicrobial duration in the 
PCT arm is consistent with the previous studies [135], 
although this systematic review only noted mortality 
reduction with PCT-guided therapy when liberal proto-
cols (PCT falling by > 80% from peak or < 0.5 ng/ml) were 
used.

Whilst the principle that antimicrobial duration should 
be “as short as possible” there remains a lack of consensus 
regarding “how short is possible” and how to individual-
ise durations to given patients, microorganisms and sites 
of infection. The best approach we can advocate is daily 
multidisciplinary review [136], with intensivists, microbi-
ologist, and pharmacist asking every day (1) has the cor-
rect antimicrobial been given and (2) can we now stop it?

Area for future research
Despite progress in understanding antibiotic–patient–
pathogen interactions, significant gaps remain. Achieving 
rapid etiological diagnoses and administering the nar-
rowest adequate antibiotic promptly should be the goal. 
Current multiplex PCR tools fall short of this objective. 
Sophisticated genomics-based diagnostics in the form 
of “pan-pathogen” detection using shotgun metagenom-
ics (i.e., sequencing all nucleic acids in a sample) or more 
targeted approaches (e.g., amplicon or hybrid-capture 
enrichment prior to sequencing) [137, 138] may help 
revolutionise pathogen detection. This will require a 
major re-orientation of how clinicians use and interpret 
genomics-based tests, careful validation, and assessment 
of diagnostic accuracy and cost–benefit [139].

Studies linking antibiotic exposure–response relation-
ships show reduced mortality when dosing is optimised 
[83, 84, 140]. Current evidence is for continuous infusion 
beta-lactam dosing [84], whilst extended infusions which 

be more convenient have yet to be proven as good as or 
better than continuous infusion. However, even when 
the established PK/PD target is attained, a proportion of 
patients do not respond to therapy or develop resistance 
during treatment. Further research is therefore needed 
in optimising dosing, especially in special populations 
such as critically ill patients. Multi-omics approaches—
integrating transcriptomics, proteomics, and metabo-
lomics—could enhance understanding of resistance 
mechanisms and guide synergistic antibiotic combina-
tions [141]. This multi-omics approach has already been 
successfully used to optimise synergistic antibiotic com-
binations in the clinical setting [142].

Another area of investigation is related to the complex 
interactions between bacteria and our immune system 
in response to specific bacterial strains. Furthermore, 
research into host–pathogen interactions may enable 
personalised sepsis therapies. Stratifying patients based 
on immune transcriptomic profiles could identify those 
most likely to benefit from immunomodulatory treat-
ments and predict mortality risk [143]. Several studies 
have used blood leukocyte transcriptome data to stratify 
patients with septic shock according to their immune 
responses [144].

Finally, ongoing research is active in identifying non-
traditional therapies, such as bacteriophages, anti-vir-
ulence drugs, or microbiome-modulating treatments 
[145]. Realising their potential will require collabora-
tive research platforms involving diverse stakeholders 
and global settings. Key areas for investigation are sum-
marised in the Table  2. We would like to complete this 
section with the statement that we have all seen some 
patients with the best therapy available just do not thrive, 
and this may be due to sepsis subtypes for which there is 
a dire need to investigate further [146].

Conclusion
Poor outcomes associated with severe infections and ris-
ing multidrug resistance underscore the urgent need to 
optimise antibiotic therapy. Evidence shows that appro-
priate antibiotic use can improve outcomes and that mis-
use causes harm.

Even with considerable advancements in rapid diag-
nostic tools, early administration of appropriately chosen 
and adequately dosed antibiotics remains challenging. 
Empiric therapy should be started immediately only in 
patients with septic shock. Otherwise, the decision of 
treatment may be safely deferred until careful clinical 
evaluation and investigation of the patient, and review 
of microbiological results. With the help of multidisci-
plinary rounds, early cessation should be considered in 
culture-negative and improving cases.
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Narrow-spectrum agents at correct doses should be 
prioritised. Dose optimisation, aided by nomograms and 
therapeutic drug monitoring (TDM), minimises toxic-
ity. The duration of therapy should be as short as pos-
sible. However, in severe infection, when source control 
cannot be achieved or when recovery is incomplete, the 
optimal duration should be personalised according to 
the microorganisms, the host, and the clinical status, 
again informed by multidisciplinary rounds. Artificial 

intelligence may support future antibiotic management, 
but robust validation is required.

Out of the scope of this review, but of considerable 
importance, is the control of diffusion of resistant bacte-
ria in the community by limiting antimicrobial use in ani-
mals, avoiding spread of antibiotics in the environment, 
improving global hygiene in a one-health approach. 
Finally, we should keep in mind that the most appropri-
ate way to save antibiotics for future use is to prevent 

Table 2  Suggested areas of future research

Topics for future investigations Comments and questions

Burden of sepsis Measuring the burden of untreated sepsis within communities is critical for 
identifying gaps in healthcare delivery and improving outcomes

Understanding the pathways of care, including how patients navigate the 
healthcare system, and identifying specific barriers unique to different 
settings will be essential steps

Gathering data on the prevention, recognition, management, and reha‑
bilitation of sepsis in resource limited settings is key to develop targeted 
interventions

Rapid diagnostic tests Rapid diagnostics to inform antibiotic choice more rapidly should be 
undertaken. There are several expensive state of the art systems which 
should also be tested for health system cost-effectiveness

Accurate interpretation of RDT requires expertise, and further research is 
necessary to evaluate their impact on AMS and patient outcomes

The impact of syndromic mPCR including not only suspected but also very 
uncommon pathogens should be refined

Rapid pan pathogen genomic-based diagnostics should be developed and 
tested in severe infections

TDM: use of rapid TDM and dosing softwares Interventional dose optimization studies using rapidly applied TDM and 
dosing software to see if patient outcomes and healthcare costs can be 
improved

To overcome the barriers related to antimicrobial TDM-guided dose opti‑
mization, innovative approaches using real-time health record data and 
artificial intelligence (AI) embedded into dosing software deserve further 
investigation

Further to this, the effect of dose optimization on emergence of AMR is 
important

Refine the knowledge about host pathogen interactions and virulence 
factors

To evaluate in a wide range of clinical isolates the bacterial genomic, 
transcriptomic, and metabolomic fingerprints that are predictive of effica‑
cious antimicrobial therapy

Improve knowledge about possible adverse effects of antibiotics Exposure to bactericidal antimicrobials results in mitochondrial toxicity that 
may contribute to development and perpetuation of organ dysfunction 
and to immunoparalysis in sepsis

To evaluate the respective impact of broad spectrum antibiotics on the gut 
microbiota through novel metagenomic approaches

The use of mono active vs dual active antibiotic therapy The comparison of monoactive antimicrobial therapy vs dual active antibi‑
otic therapy should be tested in a large RCT focusing on highly resistant 
Gram-negative bacteria (A baumanni, S maltophilia and other difficult-to-
treat gram negative bacteria)

Duration of antibiotic therapy When short duration of antibiotic therapy is too short? A comparison of 
a fixed short duration of therapy to an individualized assessment of the 
duration of therapy in patients with severe infections

Early cessation vs antibiotic continuation in case of culture negative sepsis

To identify new targets for severe infections Role of bacteriophages, antivirulence drugs or microbiome modulating 
treatments
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infections and to combine antibiotic stewardship pro-
grammes with good infection control system [147].

Louis Pasteur: « au lieu de s’ingénier à  tuer microbes 
dans la plaie, ne serait-il pas plus raisonnable de ne pas 
en introduire ?» "Instead of trying to kill microbes in the 
wound, wouldn’t it be more reasonable not to introduce 
any?”.
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