转载:1w 字的 pandas 核心操作知识大全!

引入依赖

# 导入模块
import pymysql
import pandas as pd
import numpy as np
import time

# 数据库
from sqlalchemy import create_engine

# 可视化
import matplotlib.pyplot as plt
# 如果你的设备是配备Retina屏幕的mac,可以在jupyter notebook中,使用下面一行代码有效提高图像画质
%config InlineBackend.figure_format = 'retina'
# 解决 plt 中文显示的问题 mymac
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
# 设置显示中文 需要先安装字体 aistudio
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
import seaborn as sns
# notebook渲染图片
%matplotlib inline
import pyecharts

# 忽略版本问题
import warnings
warnings.filterwarnings("ignore")
# 下载中文字体
!wget https://mydueros.cdn.bcebos.com/font/simhei.ttf 
# 将字体文件复制到 matplotlib'字体路径
!cp simhei.ttf /opt/conda/envs/python35-paddle120-env/Lib/python3,7/site-packages/matplotib/mpl-data/fonts.

# 一般只需要将字体文件复制到系统字体田录下即可,但是在 studio上该路径没有写权限,所以此方法不能用 
# !cp simhei. ttf /usr/share/fonts/

# 创建系统字体文件路径
!mkdir .fonts
# 复制文件到该路径
!cp simhei.ttf .fonts/
!rm -rf .cache/matplotlib

算法相关依赖

# 数据归一化
from sklearn.preprocessing import MinMaxScaler

# kmeans聚类
from sklearn.cluster import KMeans
# DBSCAN聚类
from sklearn.cluster import DBSCAN
# 线性回归算法
from sklearn.linear_model import LinearRegression
# 逻辑回归算法
from sklearn.linear_model import LogisticRegression
# 高斯贝叶斯
from sklearn.naive_bayes import GaussianNB
# 划分训练/测试集
from sklearn.model_selection import train_test_split
# 准确度报告
from sklearn import metrics
# 矩阵报告和均方误差
from sklearn.metrics import classification_report, mean_squared_error

获取数据

from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://root:root@127.0.0.1:3306/ry?charset=utf8')

# 查询插入后相关表名及行数
result_query_sql = "use information_schema;"
engine.execute(result_query_sql)
result_query_sql = "SELECT table_name,table_rows FROM tables WHERE TABLE_NAME LIKE 'log%%' order by table_rows desc;"
df_result = pd.read_sql(result_query_sql, engine)

生成df

# list转df
df_result = pd.DataFrame(pred,columns=['pred'])
df_result['actual'] = test_target
df_result

# df取子df
df_new = df_old[['col1','col2']]

# dict生成df
df_test = pd.DataFrame({'A':[0.587221, 0.135673, 0.135673, 0.135673, 0.135673], 
                        'B':['a', 'b', 'c', 'd', 'e'],
                        'C':[1, 2, 3, 4, 5]})

# 指定列名
data = pd.DataFrame(dataset.data, columns=dataset.feature_names)

# 使用numpy生成20个指定分布(如标准正态分布)的数
tem = np.random.normal(0, 1, 20)
df3 = pd.DataFrame(tem)

# 生成一个和df长度相同的随机数dataframe
df1 = pd.DataFrame(pd.Series(np.random.randint(1, 10, 135)))

重命名列

# 重命名列
data_scaled = data_scaled.rename(columns={'本体油位': 'OILLV'})

增加列

# df2df
df_jj2yyb['r_time'] = pd.to_datetime(df_jj2yyb['cTime'])

# 新增一列根据salary将数据分为3组
bins = [0,5000, 20000, 50000]
group_names = ['低', '中', '高']
df['categories'] = pd.cut(df['salary'], bins, labels=group_names)

缺失值处理

# 检查数据中是否含有任何缺失值
df.isnull().values.any()

# 查看每列数据缺失值情况
df.isnull().sum()

# 提取某列含有空值的行
df[df['日期'].isnull()]

# 输出每列缺失值具体行数
for i in df.columns:
    if df[i].count() != len(df):
        row = df[i][df[i].isnull().values].index.tolist()
        print('列名:"{}", 第{}行位置有缺失值'.format(i,row))

# 众数填充
heart_df['Thal'].fillna(heart_df['Thal'].mode(dropna=True)[0], inplace=True)

# 连续值列的空值用平均值填充
dfcolumns = heart_df_encoded.columns.values.tolist()
for item in dfcolumns:
    if heart_df_encoded[item].dtype == 'float':
       heart_df_encoded[item].fillna(heart_df_encoded[item].median(), inplace=True)

独热编码

df_encoded = pd.get_dummies(df_data)

替换值

# 按列值替换
num_encode = {
    'AHD': {'No':0, "Yes":1},
}
heart_df.replace(num_encode,inplace=True)

删除列

df_jj2.drop(['coll_time', 'polar', 'conn_type', 'phase', 'id', 'Unnamed: 0'],axis=1,inplace=True)

groupby

# 0.从sklearn加载iris数据集
from sklearn import datasets
# 加载数据集和目标
data, target = datasets.load_iris(return_X_y=True, as_frame=True)
# 合并数据集和目标
iris = pd.concat([data, target], axis=1, sort=False)
iris

# 创建groupby对象
iris_gb = iris.groupby('target')

# 1. 创建频率表,输出每个类中数量多少
iris_gb.size()

# 2. 计算常用的描述统计量
# min、max()、medianhe、std等
# 计算均值
iris_gb.mean()
# 单列
iris_gb['sepal length (cm)'].mean()
# 双列
iris_gb[['sepal length (cm)', 'sepal width (cm)']].mean()

# 3. 查找最大值(最小值)索引
iris_gb.idxmax()

# 按sepal_length最大值这个条件进行了筛选
sepal_largest = iris.loc[iris_gb['sepal length (cm)'].idxmax()]

# 4. Groupby之后重置索引
iris_gb.max().reset_index()
# ↑↓二者效果相同
iris.groupby('target', as_index=False).max()

# 5. 多种统计量汇总,聚合函数agg
iris_gb[['sepal length (cm)', 'sepal width (cm)']].agg(["min", "mean"])

# 6.特定列的聚合
# 为不同的列单独设置不同的统计量
iris_gb.agg({"sepal length (cm)": ["min", "max"], "sepal width (cm)": ["mean", "std"]})

# 7. NamedAgg命名统计量
# 把每个列下面的统计量和列名分别合并起来。可以使用NamedAgg来完成列的命名

iris_gb.agg(
     sepal_min=pd.NamedAgg(column="sepal length (cm)", aggfunc="min"),
     sepal_max=pd.NamedAgg(column="sepal length (cm)", aggfunc="max"),
     petal_mean=pd.NamedAgg(column="petal length (cm)", aggfunc="mean"),
     petal_std=pd.NamedAgg(column="petal length (cm)", aggfunc="std")
 )

# 下述更简洁
iris_gb.agg(
    sepal_min=("sepal length (cm)", "min"),
    sepal_max=("sepal length (cm)", "max"),
    petal_mean=("petal length (cm)", "mean"),
    petal_std=("petal length (cm)", "std")
)

# 8. 使用自定义函数
iris_gb.agg(pd.Series.mean)
# 不仅如此,名称和功能对象也可一起使用。
iris_gb.agg(["min", pd.Series.mean])
# 我们还可以自定义函数,也都是可以的。
def double_length(x):
    return 2*x.mean()

iris_gb.agg(double_length)
# 如果想更简洁,也可以使用lambda函数。总之,用法非常灵活,可以自由组合搭配。
iris_gb.agg(lambda x: x.mean())

透视表

import numpy as np
import pandas as pd
import seaborn as sns
titanic = sns.load_dataset('titanic')

titanic.pivot_table(index='sex', columns='class')

# 默认对所有列进行聚合,这时我们给与values参数,只计算想要的结果
agg = pd.cut(titanic["age"],[0,18,80]) # 对年龄数据列进行分段,便于观看
titanic.pivot_table(index=['sex','age'], columns='class',values=['survived','fare'])

# 在实际使用中,并不一定每次都要均值,使用aggfunc指定累计函数
titanic.pivot_table(index='sex', columns='class',aggfunc={'survived':sum, 'fare':'mean'})

# 当需要计算每一组的总数时,可以通过margins 参数来设置:
# margin 的标签可以通过margins_name 参数进行自定义,默认值是"All"。
titanic.pivot_table('survived', index='sex', columns='class', margins=True)

数据筛选

# 取第33行数据
df.iloc[32]

# 某列以xxx字符串开头
df_jj2 = df_512.loc[df_512["transformer"].str.startswith('JJ2')]

df_jj2yya = df_jj2.loc[df_jj2["变压器编号"]=='JJ2YYA']

# 提取第一列中不在第二列出现的数字
df['col1'][~df['col1'].isin(df['col2'])]

# 查找两列值相等的行号
np.where(df.secondType == df.thirdType)

# 包含字符串
results = df['grammer'].str.contains("Python")

# 提取列名
df.columns

# 查看某列唯一值(种类)
df['education'].nunique()

# 删除重复数据
df.drop_duplicates(inplace=True)

# 某列等于某值
df[df.col_name==0.587221]
# df.col_name==0.587221 各行判断结果返回值(True/False)

# 查看某列唯一值及计数
df_jj2["变压器编号"].value_counts()

# 时间段筛选
df_jj2yyb_0501_0701 = df_jj2yyb[(df_jj2yyb['r_time'] >=pd.to_datetime('20200501')) & (df_jj2yyb['r_time'] <= pd.to_datetime('20200701'))]

# 数值筛选
df[(df['popularity'] > 3) & (df['popularity'] < 7)]

# 按数据类型选择列
df = pd.DataFrame({'a': [1, 2] * 3,
                   'b': [True, False] * 3,
                   'c': [1.0, 2.0] * 3})
print('df:', df)

# 输出包含 bool 数据类型的列
print('输出包含 bool 数据类型的列:', df.select_dtypes(include='bool'))

# 输出包含小数数据类型的列
print('输出包含小数数据类型的列:', df.select_dtypes(include=['float64']))

# 输出排除整数的列
print('输出包含小数数据类型的列:', df.select_dtypes(exclude=['int64']))

# 某列字符串截取
df['Time'].str[0:8]

# 随机取num行
ins_1 = df.sample(n=num)

# 数据去重
df.drop_duplicates(['grammer'])

# 按某列排序(降序)
df.sort_values("popularity",inplace=True, ascending=False)

# 取某列最大值所在行
df[df['popularity'] == df['popularity'].max()]

# 取某列最大num行
df.nlargest(num,'col_name')
# 最大num列画横向柱形图
df.nlargest(10).plot(kind='barh')

差值计算

# axis=0或index表示上下移动, periods表示移动的次数,为正时向下移,为负时向上移动。
print(df.diff( periods=1, axis=‘index‘))
print(df.diff( periods=-1, axis=0))
# axis=1或columns表示左右移动,periods表示移动的次数,为正时向右移,为负时向左移动。
print(df.diff( periods=1, axis=‘columns‘))
print(df.diff( periods=-1, axis=1))

# 变化率计算
data['收盘价(元)'].pct_change()

# 以5个数据作为一个数据滑动窗口,在这个5个数据上取均值
df['收盘价(元)'].rolling(5).mean()

数据修改

# 删除最后一行
df = df.drop(labels=df.shape[0]-1)

# 添加一行数据['Perl',6.6]
row = {'grammer':'Perl','popularity':6.6}
df = df.append(row,ignore_index=True)

# 某列小数转百分数
df.style.format({'data': '{0:.2%}'.format})

# 反转行
df.iloc[::-1, :]

# 以两列制作数据透视
pd.pivot_table(df,values=["salary","score"],index="positionId")

# 同时对两列进行计算
df[["salary","score"]].agg([np.sum,np.mean,np.min])

# 对不同列执行不同的计算
df.agg({"salary":np.sum,"score":np.mean})

时间格式转换

# 时间戳转时间字符串
df_jj2['cTime'] =df_jj2['coll_time'].apply(lambda x: time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(x)))

# 时间字符串转时间格式
df_jj2yyb['r_time'] = pd.to_datetime(df_jj2yyb['cTime'])

# 时间格式转时间戳
dtime = pd.to_datetime(df_jj2yyb['r_time'])
v = (dtime.values - np.datetime64('1970-01-01T08:00:00Z')) / np.timedelta64(1, 'ms')
df_jj2yyb['timestamp'] = v

设置索引列

df_jj2yyb_small_noise = df_jj2yyb_small_noise.set_index('timestamp')

折线图

fig, ax = plt.subplots()
df.plot(legend=True, ax=ax)
plt.legend(loc=1)
plt.show()


plt.figure(figsize=(20, 6))
plt.plot(max_iter_list, accuracy, color='red', marker='o',
         markersize=10)
plt.title('Accuracy Vs max_iter Value')
plt.xlabel('max_iter Value')
plt.ylabel('Accuracy')

柱形图

df = pd.Series(tree.feature_importances_, index=data.columns)
# 取某列最大Num行画横向柱形图
df.nlargest(10).plot(kind='barh')

热力图

df_corr = combine.corr()
plt.figure(figsize=(20,20))
g=sns.heatmap(df_corr,annot=True,cmap="RdYlGn")

从各种不同的来源和格式导入数据

pd.read_csv(filename) # 从CSV文件 
pd.read_table(filename) # 从分隔的文本文件(例如CSV)中 
pd.read_excel(filename) # 从Excel文件 
pd.read_sql(query, connection_object) # 从SQL表/数据库中读取 
pd.read_json(json_string) # 从JSON格式的字符串,URL或文件中读取。
pd.read_html(url) # 解析html URL,字符串或文件,并将表提取到数据帧列表 
pd.read_clipboard() # 获取剪贴板的内容并将其传递给 read_table() 
pd.DataFrame(dict) # 从字典中,列名称的键,列表中的数据的值

导出数据

df.to_csv(filename) # 写入CSV文件 
df.to_excel(filename) # 写入Excel文件 
df.to_sql(table_name, connection_object) # 写入SQL表 
df.to_json(filename) # 以JSON格式写入文件

创建测试对象

pd.DataFrame(np.random.rand(20,5))               # 5列20行随机浮点数 pd.Series(my_list)                               # 从一个可迭代的序列创建一个序列 my_list 
df.index = pd.date_range('1900/1/30', periods=df.shape[0]) # 添加日期索引

查看、检查数据

df.head(n)                       # DataFrame的前n行 
df.tail(n)                       # DataFrame的最后n行 
df.shape                         # 行数和列数 
df.info()                        # 索引,数据类型和内存信息 
df.describe()                    # 数值列的摘要统计信息 
s.value_counts(dropna=False)     # 查看唯一值和计数 
df.apply(pd.Series.value_counts) # 所有列的唯一值和计数

数据选取

使用这些命令选择数据的特定子集。
df[col]               # 返回带有标签col的列 
df[[col1, col2]]      # 返回列作为新的DataFrame 
s.iloc[0]             # 按位置选择 
s.loc['index_one']    # 按索引选择 
df.iloc[0,:]          # 第一行 
df.iloc[0,0]          # 第一栏的第一元素

数据清理

df.columns = ['a','b','c']                  # 重命名列 
pd.isnull()                                 # 空值检查,返回Boolean Arrray 
pd.notnull()                                # 与pd.isnull() 相反 
df.dropna()                                 # 删除所有包含空值的行 
df.dropna(axis=1)                           # 删除所有包含空值的列 
df.dropna(axis=1,thresh=n)                  # 删除所有具有少于n个非null值的行 
df.fillna(x)                                # 将所有空值替换为x 
s.fillna(s.mean())                          # 用均值替换所有空值(均值可以用统计模块中的几乎所有函数替换 ) 
s.astype(float)                             # 将系列的数据类型转换为float 
s.replace(1,'one')                          # 1 用 'one' 
s.replace([1,3],['one','three'])            # 替换所有等于的值 替换为所有1 'one' ,并 3 用 'three' df.rename(columns=lambda x: x + 1)          # 列的重命名 
df.rename(columns={'old_name': 'new_ name'})# 选择性重命名 
df.set_index('column_one')                  # 更改索引 
df.rename(index=lambda x: x + 1)            # 大规模重命名索引

筛选,排序和分组依据

df[df[col] > 0.5]                      # 列 col 大于 0.5 df[(df[col] > 0.5) & (df[col] < 0.7)]  # 小于 0.7 大于0.5的行 
df.sort_values(col1)                   # 按col1升序对值进行排序 
df.sort_values(col2,ascending=False)   # 按col2 降序对值进行 排序 
df.sort_values([col1,col2],ascending=[True,False]) #按 col1 升序排序,然后 col2 按降序排序 
df.groupby(col)                        #从一个栏返回GROUPBY对象 
df.groupby([col1,col2]) # 返回来自多个列的groupby对象 
df.groupby(col1)[col2]                 # 返回中的值的平均值 col2,按中的值分组 col1 (平均值可以用统计模块中的几乎所有函数替换 ) 
df.pivot_table(index=col1,values=[col2,col3],aggfunc=mean) # 创建一个数据透视表组通过 col1 ,并计算平均值的 col2 和 col3 
df.groupby(col1).agg(np.mean)          # 在所有列中找到每个唯一col1 组的平均值 
df.apply(np.mean)                      #np.mean() 在每列上应用该函数 
df.apply(np.max,axis=1)                # np.max() 在每行上应用功能

数据合并

df1.append(df2)                   # 将df2添加 df1的末尾 (各列应相同) 
pd.concat([df1, df2],axis=1)      # 将 df1的列添加到df2的末尾 (行应相同) 
df1.join(df2,on=col1,how='inner') # SQL样式将列 df1 与 df2 行所在的列col 具有相同值的列连接起来。'how'可以是一个 'left', 'right', 'outer', 'inner'

数据统计

df.describe()    # 数值列的摘要统计信息 
df.mean()        # 返回均值的所有列 
df.corr()        # 返回DataFrame中各列之间的相关性 
df.count()       # 返回非空值的每个数据帧列中的数字 
df.max()         # 返回每列中的最高值 
df.min()         # 返回每一列中的最小值 
df.median()      # 返回每列的中位数 
df.std()         # 返回每列的标准偏差

    特别申明:本文为转载文章,转载自 法纳斯特,不代表贪吃的夜猫子立场,如若转载,请注明出处:https://mp.weixin.qq.com/s/vwX-Cc_YlIxeZZuz3w9RJg

    (0)
    打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
    xujunzju管理者
    上一篇 2022年2月11日 17:24
    下一篇 2022年3月28日 07:33

    相关推荐

    发表回复

    登录后才能评论
    联系我们
    邮箱:
    xujunzju@gmail.com
    公众号:
    xujunzju6174
    捐赠本站
    捐赠本站
    分享本页
    返回顶部