这是一本非常实用的机器学习入门基础图书——《机器学习入门基础(微课版)》。这本书是由黄海广老师倾心打造,适合只有本科三年级数学水平以上的初学者入门,这本书已经被很多学校定为本科生教材。
背景介绍
本书的作者黄海广老师是一名大学教师,翻译和整理过很多人工智能的入门课程资料,如“吴恩达机器学习”的翻译和笔记整理等,他目前承担本科生和研究生的机器学习课程的教学工作。在借鉴了国内外许多优秀的机器学习课程和作品后,黄海广老师决定写一本适合初学者的机器学习入门书,以方便大家快速入门。
内容梗概
这本书已经在清华大学出版社完成第二次印刷,不仅适合初学者学习,也适合新手老师授课。主要内容包括线性回归、逻辑回归、决策树等经典算法,以及 XGBoost、LightGBM 等集成学习算法。此外,还讲解了利用机器学习解决问题的实用技术,包括 Python、Scikit-learn 工具的使用等。
这本书的视频内容已经在中国大学慕课进行授课,目前是第六轮了。慕课地址:
https://www.icourse163.org/course/WZU-1464096179
课程资源(pdf版本课件和代码)公布在Github:
https://github.com/fengdu78/WZU-machine-learning-course
特别申明:本文为转载文章,转载自机器学习初学者,不代表贪吃的夜猫子立场,如若转载,请注明出处:https://mp.weixin.qq.com/s/vSEqPhfPGZte-McnykkOVw